SerdarHelli
commited on
Commit
•
974cfa7
1
Parent(s):
96bc6a9
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
import tensorflow as tf
|
6 |
+
from PIL import Image
|
7 |
+
import numpy as np
|
8 |
+
import cv2
|
9 |
+
|
10 |
+
model=tf.keras.models.load_model("SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net/dental_xray_seg.h5")
|
11 |
+
|
12 |
+
st.header("Segmentation of Teeth in Panoramic X-ray Image Using UNet")
|
13 |
+
|
14 |
+
|
15 |
+
link='Check Out Our Github Repo ! [link](https://github.com/SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net)'
|
16 |
+
st.markdown(link,unsafe_allow_html=True)
|
17 |
+
|
18 |
+
|
19 |
+
def load_image(image_file):
|
20 |
+
img = Image.open(image_file)
|
21 |
+
return img
|
22 |
+
|
23 |
+
def convert_one_channel(img):
|
24 |
+
#some images have 3 channels , although they are grayscale image
|
25 |
+
if len(img.shape)>2:
|
26 |
+
img=img[:,:,0]
|
27 |
+
return img
|
28 |
+
else:
|
29 |
+
return img
|
30 |
+
|
31 |
+
st.subheader("Image")
|
32 |
+
image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"])
|
33 |
+
|
34 |
+
if image_file is not None:
|
35 |
+
file_details = {"filename":image_file.name, "filetype":image_file.type,
|
36 |
+
"filesize":image_file.size}
|
37 |
+
st.write(file_details)
|
38 |
+
img=load_image(image_file)
|
39 |
+
|
40 |
+
st.text("Making A Prediction ....")
|
41 |
+
st.image(img,width=850)
|
42 |
+
|
43 |
+
img=np.asarray(img)
|
44 |
+
|
45 |
+
img_cv=convert_one_channel(img)
|
46 |
+
img_cv=cv2.resize(img_cv,(512,512), interpolation=cv2.INTER_LANCZOS4)
|
47 |
+
img_cv=np.float32(img_cv/255)
|
48 |
+
|
49 |
+
img_cv=np.reshape(img_cv,(1,512,512,1))
|
50 |
+
prediction=model.predict(img_cv)
|
51 |
+
predicted=prediction[0]
|
52 |
+
predicted = cv2.resize(predicted, (img.shape[1],img.shape[0]), interpolation=cv2.INTER_LANCZOS4)
|
53 |
+
mask=np.uint8(predicted*255)#
|
54 |
+
_, mask = cv2.threshold(mask, thresh=255/2, maxval=255, type=cv2.THRESH_BINARY+cv2.THRESH_OTSU)
|
55 |
+
cnts,hieararch=cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
56 |
+
output = cv2.drawContours(convert_one_channel(img), cnts, -1, (255, 0, 0) , 2)
|
57 |
+
|
58 |
+
if output is not None :
|
59 |
+
st.subheader("Predicted Image")
|
60 |
+
st.image(output,width=850)
|
61 |
+
|
62 |
+
st.text("DONE ! ....")
|
63 |
+
|
64 |
+
|