Spaces:
Running
Running
gokaygokay
commited on
Commit
•
5d944e0
1
Parent(s):
2b06fda
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import numpy as np
|
2 |
-
import scipy as sp
|
3 |
from numba import njit, prange, vectorize
|
4 |
import gradio as gr
|
5 |
|
@@ -20,49 +19,21 @@ def neighbours(y, x, max_y, max_x):
|
|
20 |
n.append((y, x+1))
|
21 |
return n
|
22 |
|
23 |
-
@njit
|
24 |
-
def poisson_sharpening(img, alpha):
|
25 |
-
"""
|
26 |
-
Returns a sharpened image with strength of alpha.
|
27 |
-
:param img: the image
|
28 |
-
:param alpha: edge threshold and gradient scaler
|
29 |
-
"""
|
30 |
img_h, img_w = img.shape
|
31 |
-
|
32 |
-
|
33 |
-
im2var = np.arange(img_h * img_w).reshape(img_h, img_w)
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
for y in prange(img_h):
|
42 |
-
for x in prange(img_w):
|
43 |
-
A_data[e] = 1
|
44 |
-
A_row[e] = e
|
45 |
-
A_col[e] = im2var[y, x]
|
46 |
-
b[e] = img_s[y, x]
|
47 |
-
e += 1
|
48 |
-
|
49 |
-
for n_y, n_x in neighbours(y, x, img_h-1, img_w-1):
|
50 |
-
A_data[e] = 1
|
51 |
-
A_row[e] = e
|
52 |
-
A_col[e] = im2var[y, x]
|
53 |
-
e += 1
|
54 |
-
|
55 |
-
A_data[e] = -1
|
56 |
-
A_row[e] = e - 1
|
57 |
-
A_col[e] = im2var[n_y, n_x]
|
58 |
-
|
59 |
-
b[e-1] = alpha * (img_s[y, x] - img_s[n_y, n_x])
|
60 |
-
e += 1
|
61 |
-
|
62 |
-
A = sp.sparse.csr_matrix((A_data[:e], (A_row[:e], A_col[:e])), shape=(e, img_h * img_w))
|
63 |
-
v = sp.sparse.linalg.lsqr(A, b[:e])[0]
|
64 |
-
|
65 |
-
return clip(v.reshape(img_h, img_w), 1.0)
|
66 |
|
67 |
@njit(parallel=True)
|
68 |
def sharpen_image(img, alpha):
|
|
|
1 |
import numpy as np
|
|
|
2 |
from numba import njit, prange, vectorize
|
3 |
import gradio as gr
|
4 |
|
|
|
19 |
n.append((y, x+1))
|
20 |
return n
|
21 |
|
22 |
+
@njit
|
23 |
+
def poisson_sharpening(img, alpha, num_iterations=50):
|
|
|
|
|
|
|
|
|
|
|
24 |
img_h, img_w = img.shape
|
25 |
+
v = img.copy()
|
|
|
|
|
26 |
|
27 |
+
for _ in range(num_iterations):
|
28 |
+
for y in range(img_h):
|
29 |
+
for x in range(img_w):
|
30 |
+
neighbors = neighbours(y, x, img_h-1, img_w-1)
|
31 |
+
num_neighbors = len(neighbors)
|
32 |
+
neighbor_sum = sum(v[ny, nx] for ny, nx in neighbors)
|
33 |
+
laplacian = neighbor_sum - num_neighbors * v[y, x]
|
34 |
+
v[y, x] += (laplacian + alpha * (img[y, x] - v[y, x])) / (num_neighbors + alpha)
|
35 |
|
36 |
+
return clip(v, 1.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
@njit(parallel=True)
|
39 |
def sharpen_image(img, alpha):
|