Spaces:
Running
Running
gokaygokay
commited on
Commit
•
2b06fda
1
Parent(s):
a480a22
Update app.py
Browse files
app.py
CHANGED
@@ -1,38 +1,49 @@
|
|
1 |
-
import cv2
|
2 |
import numpy as np
|
3 |
import scipy as sp
|
4 |
-
import
|
5 |
-
from numba import njit, prange
|
6 |
import gradio as gr
|
7 |
|
|
|
|
|
|
|
|
|
8 |
@njit
|
9 |
def neighbours(y, x, max_y, max_x):
|
10 |
-
|
11 |
if y > 0:
|
12 |
-
|
13 |
if y < max_y:
|
14 |
-
|
15 |
if x > 0:
|
16 |
-
|
17 |
if x < max_x:
|
18 |
-
|
19 |
-
return
|
20 |
|
21 |
-
@njit
|
22 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
im2var = np.arange(img_h * img_w).reshape(img_h, img_w)
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
28 |
|
29 |
e = 0
|
30 |
-
for y in
|
31 |
-
for x in
|
32 |
A_data[e] = 1
|
33 |
A_row[e] = e
|
34 |
A_col[e] = im2var[y, x]
|
35 |
-
b[e] =
|
36 |
e += 1
|
37 |
|
38 |
for n_y, n_x in neighbours(y, x, img_h-1, img_w-1):
|
@@ -45,32 +56,27 @@ def build_poisson_matrix(img, alpha, img_h, img_w):
|
|
45 |
A_row[e] = e - 1
|
46 |
A_col[e] = im2var[n_y, n_x]
|
47 |
|
48 |
-
b[e-1] = alpha * (
|
49 |
e += 1
|
50 |
|
51 |
-
|
|
|
52 |
|
53 |
-
|
54 |
-
img_h, img_w = img.shape
|
55 |
-
A_data, A_row, A_col, b, e = build_poisson_matrix(img, alpha, img_h, img_w)
|
56 |
-
|
57 |
-
A = sp.sparse.csr_matrix((A_data, (A_row, A_col)), shape=(e, img_h * img_w))
|
58 |
-
v = sp.sparse.linalg.lsqr(A, b)[0]
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
63 |
sharpen_img = np.zeros_like(img)
|
64 |
-
for b in
|
65 |
sharpen_img[:,:,b] = poisson_sharpening(img[:,:,b], alpha)
|
66 |
-
|
67 |
-
|
68 |
-
def get_image(img):
|
69 |
-
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB).astype('float32') / 255.0
|
70 |
-
|
71 |
-
def sharpen_image(input_img, alpha):
|
72 |
-
img = get_image(input_img)
|
73 |
-
sharpen_img = sharpen_image_channels(img, alpha)
|
74 |
return (sharpen_img * 255).astype(np.uint8)
|
75 |
|
76 |
# Create examples list
|
|
|
|
|
1 |
import numpy as np
|
2 |
import scipy as sp
|
3 |
+
from numba import njit, prange, vectorize
|
|
|
4 |
import gradio as gr
|
5 |
|
6 |
+
@vectorize(['float64(float64, float64)'], nopython=True)
|
7 |
+
def clip(a, max_value):
|
8 |
+
return min(max(a, 0), max_value)
|
9 |
+
|
10 |
@njit
|
11 |
def neighbours(y, x, max_y, max_x):
|
12 |
+
n = []
|
13 |
if y > 0:
|
14 |
+
n.append((y-1, x))
|
15 |
if y < max_y:
|
16 |
+
n.append((y+1, x))
|
17 |
if x > 0:
|
18 |
+
n.append((y, x-1))
|
19 |
if x < max_x:
|
20 |
+
n.append((y, x+1))
|
21 |
+
return n
|
22 |
|
23 |
+
@njit(parallel=True)
|
24 |
+
def poisson_sharpening(img, alpha):
|
25 |
+
"""
|
26 |
+
Returns a sharpened image with strength of alpha.
|
27 |
+
:param img: the image
|
28 |
+
:param alpha: edge threshold and gradient scaler
|
29 |
+
"""
|
30 |
+
img_h, img_w = img.shape
|
31 |
+
img_s = img.copy()
|
32 |
+
|
33 |
im2var = np.arange(img_h * img_w).reshape(img_h, img_w)
|
34 |
+
|
35 |
+
A_data = np.zeros(img_h * img_w * 4 * 2, dtype=np.float64)
|
36 |
+
A_row = np.zeros(img_h * img_w * 4 * 2, dtype=np.int32)
|
37 |
+
A_col = np.zeros(img_h * img_w * 4 * 2, dtype=np.int32)
|
38 |
+
b = np.zeros(img_h * img_w * 4 * 2, dtype=np.float64)
|
39 |
|
40 |
e = 0
|
41 |
+
for y in prange(img_h):
|
42 |
+
for x in prange(img_w):
|
43 |
A_data[e] = 1
|
44 |
A_row[e] = e
|
45 |
A_col[e] = im2var[y, x]
|
46 |
+
b[e] = img_s[y, x]
|
47 |
e += 1
|
48 |
|
49 |
for n_y, n_x in neighbours(y, x, img_h-1, img_w-1):
|
|
|
56 |
A_row[e] = e - 1
|
57 |
A_col[e] = im2var[n_y, n_x]
|
58 |
|
59 |
+
b[e-1] = alpha * (img_s[y, x] - img_s[n_y, n_x])
|
60 |
e += 1
|
61 |
|
62 |
+
A = sp.sparse.csr_matrix((A_data[:e], (A_row[:e], A_col[:e])), shape=(e, img_h * img_w))
|
63 |
+
v = sp.sparse.linalg.lsqr(A, b[:e])[0]
|
64 |
|
65 |
+
return clip(v.reshape(img_h, img_w), 1.0)
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
@njit(parallel=True)
|
68 |
+
def sharpen_image(img, alpha):
|
69 |
+
# Convert alpha to float
|
70 |
+
alpha = float(alpha)
|
71 |
+
|
72 |
+
# Ensure the image is in the correct format
|
73 |
+
img = img.astype(np.float64) / 255.0
|
74 |
+
|
75 |
sharpen_img = np.zeros_like(img)
|
76 |
+
for b in prange(3):
|
77 |
sharpen_img[:,:,b] = poisson_sharpening(img[:,:,b], alpha)
|
78 |
+
|
79 |
+
# Convert back to uint8 for Gradio output
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
return (sharpen_img * 255).astype(np.uint8)
|
81 |
|
82 |
# Create examples list
|