Spaces:
Sleeping
Sleeping
import torch | |
from torchaudio.transforms import Resample | |
from Preprocessing.Codec.vqvae import VQVAE | |
class CodecAudioPreprocessor: | |
def __init__(self, input_sr, output_sr=16000, device="cpu", path_to_model="Preprocessing/Codec/HiFi-Codec-16k-320d.pt", path_to_config="Preprocessing/Codec/config_16k_320d.json"): | |
self.device = device | |
self.input_sr = input_sr | |
self.output_sr = output_sr | |
self.resample = Resample(orig_freq=input_sr, new_freq=output_sr).to(self.device) | |
self.model = VQVAE(path_to_config, | |
path_to_model, | |
with_encoder=True) | |
self.model.generator.remove_weight_norm() | |
self.model.eval() | |
self.model.to(device) | |
def resample_audio(self, audio, current_sampling_rate): | |
if current_sampling_rate != self.input_sr: | |
print("warning, change in sampling rate detected. If this happens too often, consider re-ordering the audios so that the sampling rate stays constant for multiple samples") | |
self.resample = Resample(orig_freq=current_sampling_rate, new_freq=self.output_sr).to(self.device) | |
self.input_sr = current_sampling_rate | |
if type(audio) != torch.tensor and type(audio) != torch.Tensor: | |
audio = torch.tensor(audio, device=self.device, dtype=torch.float32) | |
audio = self.resample(audio.float().to(self.device)) | |
return audio | |
def audio_to_codebook_indexes(self, audio, current_sampling_rate): | |
if current_sampling_rate != self.output_sr: | |
audio = self.resample_audio(audio, current_sampling_rate) | |
elif type(audio) != torch.tensor and type(audio) != torch.Tensor: | |
audio = torch.tensor(audio, device=self.device, dtype=torch.float32) | |
return self.model.encode(audio.float().unsqueeze(0).to(self.device)).squeeze().transpose(0, 1) | |
def indexes_to_one_hot(self, indexes): | |
return torch.nn.functional.one_hot(indexes.squeeze(), num_classes=self.model.quantizer.h.n_codes) | |
def audio_to_one_hot_indexes(self, audio, current_sampling_rate): | |
indexes = self.audio_to_codebook_indexes(audio=audio, current_sampling_rate=current_sampling_rate) | |
return self.indexes_to_one_hot(indexes=indexes) | |
def indexes_to_codec_frames(self, codebook_indexes): | |
if len(codebook_indexes.size()) == 2: | |
codebook_indexes = codebook_indexes.unsqueeze(0) | |
return self.model.quantizer.embed(codebook_indexes.transpose(1, 2)).squeeze() | |
def audio_to_codec_tensor(self, audio, current_sampling_rate): | |
indexes = self.audio_to_codebook_indexes(audio=audio, current_sampling_rate=current_sampling_rate) | |
return self.indexes_to_codec_frames(codebook_indexes=indexes) | |
def indexes_to_audio(self, codebook_indexes): | |
return self.codes_to_audio(self.indexes_to_codec_frames(codebook_indexes)) | |
def codes_to_audio(self, continuous_codes): | |
return self.model.generator(continuous_codes).squeeze() | |
if __name__ == '__main__': | |
import soundfile | |
import time | |
with torch.inference_mode(): | |
test_audio1 = "../audios/ad01_0000.wav" | |
test_audio2 = "../audios/angry.wav" | |
test_audio3 = "../audios/ry.wav" | |
test_audio4 = "../audios/test.wav" | |
ap = CodecAudioPreprocessor(input_sr=1, path_to_model="Codec/HiFi-Codec-16k-320d.pt", path_to_config="Codec/config_24k_320d.json") | |
wav, sr = soundfile.read(test_audio1) | |
indexes_1 = ap.audio_to_codebook_indexes(wav, current_sampling_rate=sr) | |
wav, sr = soundfile.read(test_audio2) | |
indexes_2 = ap.audio_to_codebook_indexes(wav, current_sampling_rate=sr) | |
wav, sr = soundfile.read(test_audio3) | |
indexes_3 = ap.audio_to_codebook_indexes(wav, current_sampling_rate=sr) | |
wav, sr = soundfile.read(test_audio4) | |
indexes_4 = ap.audio_to_codebook_indexes(wav, current_sampling_rate=sr) | |
t0 = time.time() | |
audio1 = ap.indexes_to_audio(indexes_1) | |
audio2 = ap.indexes_to_audio(indexes_2) | |
audio3 = ap.indexes_to_audio(indexes_3) | |
audio4 = ap.indexes_to_audio(indexes_4) | |
t1 = time.time() | |
print(audio1.shape) | |
print(audio2.shape) | |
print(audio3.shape) | |
print(audio4.shape) | |
print(t1 - t0) | |
soundfile.write(file=f"../audios/1_reconstructed_in_{t1 - t0}_hifi.wav", data=audio1, samplerate=16000) | |
soundfile.write(file=f"../audios/2_reconstructed_in_{t1 - t0}_hifi.wav", data=audio2, samplerate=16000) | |
soundfile.write(file=f"../audios/3_reconstructed_in_{t1 - t0}_hifi.wav", data=audio3, samplerate=16000) | |
soundfile.write(file=f"../audios/4_reconstructed_in_{t1 - t0}_hifi.wav", data=audio4, samplerate=16000) | |