Spaces:
Sleeping
Sleeping
File size: 5,067 Bytes
de6e35f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
import torch
from torchaudio.transforms import Resample
from Preprocessing.Codec.vqvae import VQVAE
class CodecAudioPreprocessor:
def __init__(self, input_sr, output_sr=16000, device="cpu", path_to_model="Preprocessing/Codec/HiFi-Codec-16k-320d.pt", path_to_config="Preprocessing/Codec/config_16k_320d.json"):
self.device = device
self.input_sr = input_sr
self.output_sr = output_sr
self.resample = Resample(orig_freq=input_sr, new_freq=output_sr).to(self.device)
self.model = VQVAE(path_to_config,
path_to_model,
with_encoder=True)
self.model.generator.remove_weight_norm()
self.model.eval()
self.model.to(device)
def resample_audio(self, audio, current_sampling_rate):
if current_sampling_rate != self.input_sr:
print("warning, change in sampling rate detected. If this happens too often, consider re-ordering the audios so that the sampling rate stays constant for multiple samples")
self.resample = Resample(orig_freq=current_sampling_rate, new_freq=self.output_sr).to(self.device)
self.input_sr = current_sampling_rate
if type(audio) != torch.tensor and type(audio) != torch.Tensor:
audio = torch.tensor(audio, device=self.device, dtype=torch.float32)
audio = self.resample(audio.float().to(self.device))
return audio
@torch.inference_mode()
def audio_to_codebook_indexes(self, audio, current_sampling_rate):
if current_sampling_rate != self.output_sr:
audio = self.resample_audio(audio, current_sampling_rate)
elif type(audio) != torch.tensor and type(audio) != torch.Tensor:
audio = torch.tensor(audio, device=self.device, dtype=torch.float32)
return self.model.encode(audio.float().unsqueeze(0).to(self.device)).squeeze().transpose(0, 1)
@torch.inference_mode()
def indexes_to_one_hot(self, indexes):
return torch.nn.functional.one_hot(indexes.squeeze(), num_classes=self.model.quantizer.h.n_codes)
@torch.inference_mode()
def audio_to_one_hot_indexes(self, audio, current_sampling_rate):
indexes = self.audio_to_codebook_indexes(audio=audio, current_sampling_rate=current_sampling_rate)
return self.indexes_to_one_hot(indexes=indexes)
@torch.inference_mode()
def indexes_to_codec_frames(self, codebook_indexes):
if len(codebook_indexes.size()) == 2:
codebook_indexes = codebook_indexes.unsqueeze(0)
return self.model.quantizer.embed(codebook_indexes.transpose(1, 2)).squeeze()
@torch.inference_mode()
def audio_to_codec_tensor(self, audio, current_sampling_rate):
indexes = self.audio_to_codebook_indexes(audio=audio, current_sampling_rate=current_sampling_rate)
return self.indexes_to_codec_frames(codebook_indexes=indexes)
@torch.inference_mode()
def indexes_to_audio(self, codebook_indexes):
return self.codes_to_audio(self.indexes_to_codec_frames(codebook_indexes))
@torch.inference_mode()
def codes_to_audio(self, continuous_codes):
return self.model.generator(continuous_codes).squeeze()
if __name__ == '__main__':
import soundfile
import time
with torch.inference_mode():
test_audio1 = "../audios/ad01_0000.wav"
test_audio2 = "../audios/angry.wav"
test_audio3 = "../audios/ry.wav"
test_audio4 = "../audios/test.wav"
ap = CodecAudioPreprocessor(input_sr=1, path_to_model="Codec/HiFi-Codec-16k-320d.pt", path_to_config="Codec/config_24k_320d.json")
wav, sr = soundfile.read(test_audio1)
indexes_1 = ap.audio_to_codebook_indexes(wav, current_sampling_rate=sr)
wav, sr = soundfile.read(test_audio2)
indexes_2 = ap.audio_to_codebook_indexes(wav, current_sampling_rate=sr)
wav, sr = soundfile.read(test_audio3)
indexes_3 = ap.audio_to_codebook_indexes(wav, current_sampling_rate=sr)
wav, sr = soundfile.read(test_audio4)
indexes_4 = ap.audio_to_codebook_indexes(wav, current_sampling_rate=sr)
t0 = time.time()
audio1 = ap.indexes_to_audio(indexes_1)
audio2 = ap.indexes_to_audio(indexes_2)
audio3 = ap.indexes_to_audio(indexes_3)
audio4 = ap.indexes_to_audio(indexes_4)
t1 = time.time()
print(audio1.shape)
print(audio2.shape)
print(audio3.shape)
print(audio4.shape)
print(t1 - t0)
soundfile.write(file=f"../audios/1_reconstructed_in_{t1 - t0}_hifi.wav", data=audio1, samplerate=16000)
soundfile.write(file=f"../audios/2_reconstructed_in_{t1 - t0}_hifi.wav", data=audio2, samplerate=16000)
soundfile.write(file=f"../audios/3_reconstructed_in_{t1 - t0}_hifi.wav", data=audio3, samplerate=16000)
soundfile.write(file=f"../audios/4_reconstructed_in_{t1 - t0}_hifi.wav", data=audio4, samplerate=16000)
|