|
import gradio as gr |
|
import torch |
|
from diffusers.utils import load_image |
|
from controlnet_flux import FluxControlNetModel |
|
from transformer_flux import FluxTransformer2DModel |
|
from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline |
|
from PIL import Image, ImageDraw |
|
|
|
|
|
controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha", torch_dtype=torch.bfloat16) |
|
transformer = FluxTransformer2DModel.from_pretrained( |
|
"black-forest-labs/FLUX.1-dev", subfolder='transformer', torch_dtype=torch.bfloat16 |
|
) |
|
pipe = FluxControlNetInpaintingPipeline.from_pretrained( |
|
"black-forest-labs/FLUX.1-dev", |
|
controlnet=controlnet, |
|
transformer=transformer, |
|
torch_dtype=torch.bfloat16 |
|
).to("cuda") |
|
pipe.transformer.to(torch.bfloat16) |
|
pipe.controlnet.to(torch.bfloat16) |
|
|
|
def prepare_image_and_mask(image, width, height, overlap_percentage): |
|
|
|
image.thumbnail((width, height), Image.LANCZOS) |
|
|
|
|
|
background = Image.new('RGB', (width, height), (255, 255, 255)) |
|
|
|
|
|
offset = ((width - image.width) // 2, (height - image.height) // 2) |
|
background.paste(image, offset) |
|
|
|
|
|
mask = Image.new('L', (width, height), 255) |
|
draw = ImageDraw.Draw(mask) |
|
|
|
|
|
overlap_x = int(image.width * overlap_percentage / 100) |
|
overlap_y = int(image.height * overlap_percentage / 100) |
|
|
|
|
|
draw.rectangle([ |
|
(offset[0] + overlap_x, offset[1] + overlap_y), |
|
(offset[0] + image.width - overlap_x, offset[1] + image.height - overlap_y) |
|
], fill=0) |
|
|
|
return background, mask |
|
|
|
def inpaint(image, prompt, width, height, overlap_percentage, num_inference_steps, guidance_scale): |
|
|
|
image, mask = prepare_image_and_mask(image, width, height, overlap_percentage) |
|
|
|
|
|
generator = torch.Generator(device="cuda").manual_seed(42) |
|
|
|
|
|
result = pipe( |
|
prompt=prompt, |
|
height=height, |
|
width=width, |
|
control_image=image, |
|
control_mask=mask, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
controlnet_conditioning_scale=0.9, |
|
guidance_scale=guidance_scale, |
|
negative_prompt="", |
|
true_guidance_scale=guidance_scale |
|
).images[0] |
|
|
|
return result |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# FLUX Outpainting Demo") |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(type="pil", label="Input Image") |
|
prompt_input = gr.Textbox(label="Prompt") |
|
width_slider = gr.Slider(label="Width", minimum=256, maximum=1024, step=64, value=768) |
|
height_slider = gr.Slider(label="Height", minimum=256, maximum=1024, step=64, value=768) |
|
overlap_slider = gr.Slider(label="Overlap Percentage", minimum=0, maximum=50, step=1, value=10) |
|
steps_slider = gr.Slider(label="Inference Steps", minimum=1, maximum=100, step=1, value=28) |
|
guidance_slider = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=10.0, step=0.1, value=3.5) |
|
run_button = gr.Button("Generate") |
|
with gr.Column(): |
|
output_image = gr.Image(label="Output Image") |
|
|
|
run_button.click( |
|
fn=inpaint, |
|
inputs=[input_image, prompt_input, width_slider, height_slider, overlap_slider, steps_slider, guidance_slider], |
|
outputs=output_image |
|
) |
|
|
|
demo.launch() |