File size: 4,375 Bytes
cdb26a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
import sys
import numpy as np
import torch
import yaml
import glob
import argparse
from PIL import Image
from omegaconf import OmegaConf
from pathlib import Path

os.environ['OMP_NUM_THREADS'] = '1'
os.environ['OPENBLAS_NUM_THREADS'] = '1'
os.environ['MKL_NUM_THREADS'] = '1'
os.environ['VECLIB_MAXIMUM_THREADS'] = '1'
os.environ['NUMEXPR_NUM_THREADS'] = '1'

sys.path.insert(0, str(Path(__file__).resolve().parent / "third_party" / "lama"))
from saicinpainting.evaluation.utils import move_to_device
from saicinpainting.training.trainers import load_checkpoint
from saicinpainting.evaluation.data import pad_tensor_to_modulo

from utils import load_img_to_array, save_array_to_img


@torch.no_grad()
def inpaint_img_with_lama(
        img: np.ndarray,
        mask: np.ndarray,
        config_p: str,
        ckpt_p: str,
        mod=8,
        device="cuda"
):
    assert len(mask.shape) == 2
    if np.max(mask) == 1:
        mask = mask * 255
    img = torch.from_numpy(img).float().div(255.)
    mask = torch.from_numpy(mask).float()
    predict_config = OmegaConf.load(config_p)
    predict_config.model.path = ckpt_p
    # device = torch.device(predict_config.device)
    device = torch.device(device)

    train_config_path = os.path.join(
        predict_config.model.path, 'config.yaml')

    with open(train_config_path, 'r') as f:
        train_config = OmegaConf.create(yaml.safe_load(f))

    train_config.training_model.predict_only = True
    train_config.visualizer.kind = 'noop'

    checkpoint_path = os.path.join(
        predict_config.model.path, 'models',
        predict_config.model.checkpoint
    )
    model = load_checkpoint(
        train_config, checkpoint_path, strict=False, map_location=device)
    model.freeze()
    if not predict_config.get('refine', False):
        model.to(device)

    batch = {}
    batch['image'] = img.permute(2, 0, 1).unsqueeze(0)
    batch['mask'] = mask[None, None]
    unpad_to_size = [batch['image'].shape[2], batch['image'].shape[3]]
    batch['image'] = pad_tensor_to_modulo(batch['image'], mod)
    batch['mask'] = pad_tensor_to_modulo(batch['mask'], mod)
    batch = move_to_device(batch, device)
    batch['mask'] = (batch['mask'] > 0) * 1

    batch = model(batch)
    cur_res = batch[predict_config.out_key][0].permute(1, 2, 0)
    cur_res = cur_res.detach().cpu().numpy()

    if unpad_to_size is not None:
        orig_height, orig_width = unpad_to_size
        cur_res = cur_res[:orig_height, :orig_width]

    cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8')
    return cur_res

def setup_args(parser):
    parser.add_argument(
        "--input_img", type=str, required=True,
        help="Path to a single input img",
    )
    parser.add_argument(
        "--input_mask_glob", type=str, required=True,
        help="Glob to input masks",
    )
    parser.add_argument(
        "--output_dir", type=str, required=True,
        help="Output path to the directory with results.",
    )
    parser.add_argument(
        "--lama_config", type=str,
        default="./third_party/lama/configs/prediction/default.yaml",
        help="The path to the config file of lama model. "
             "Default: the config of big-lama",
    )
    parser.add_argument(
        "--lama_ckpt", type=str, required=True,
        help="The path to the lama checkpoint.",
    )


if __name__ == "__main__":
    """Example usage:
    python lama_inpaint.py \
        --input_img FA_demo/FA1_dog.png \
        --input_mask_glob "results/FA1_dog/mask*.png" \
        --output_dir results \
        --lama_config lama/configs/prediction/default.yaml \
        --lama_ckpt big-lama 
    """
    parser = argparse.ArgumentParser()
    setup_args(parser)
    args = parser.parse_args(sys.argv[1:])
    device = "cuda" if torch.cuda.is_available() else "cpu"

    img_stem = Path(args.input_img).stem
    mask_ps = sorted(glob.glob(args.input_mask_glob))
    out_dir = Path(args.output_dir) / img_stem
    out_dir.mkdir(parents=True, exist_ok=True)

    img = load_img_to_array(args.input_img)
    for mask_p in mask_ps:
        mask = load_img_to_array(mask_p)
        img_inpainted_p = out_dir / f"inpainted_with_{Path(mask_p).name}"
        img_inpainted = inpaint_img_with_lama(
            img, mask, args.lama_config, args.lama_ckpt, device=device)
        save_array_to_img(img_inpainted, img_inpainted_p)