Spaces:
Runtime error
Runtime error
RysonFeng
commited on
Commit
•
cdb26a4
1
Parent(s):
a9b35cc
Add source code
Browse files- LICENSE +201 -0
- __init__.py +0 -0
- fill_anything.py +128 -0
- lama_inpaint.py +134 -0
- remove_anything.py +122 -0
- replace_anything.py +126 -0
- sam_segment.py +125 -0
- stable_diffusion_inpaint.py +117 -0
- utils/__init__.py +1 -0
- utils/crop_for_replacing.py +101 -0
- utils/get_point_coor.py +12 -0
- utils/mask_processing.py +160 -0
- utils/paste_object.py +50 -0
- utils/utils.py +53 -0
- utils/visual_mask_on_img.py +62 -0
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
__init__.py
ADDED
File without changes
|
fill_anything.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import sys
|
3 |
+
import argparse
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from pathlib import Path
|
7 |
+
from matplotlib import pyplot as plt
|
8 |
+
from typing import Any, Dict, List
|
9 |
+
|
10 |
+
from sam_segment import predict_masks_with_sam
|
11 |
+
from stable_diffusion_inpaint import fill_img_with_sd
|
12 |
+
from utils import load_img_to_array, save_array_to_img, dilate_mask, \
|
13 |
+
show_mask, show_points
|
14 |
+
|
15 |
+
|
16 |
+
def setup_args(parser):
|
17 |
+
parser.add_argument(
|
18 |
+
"--input_img", type=str, required=True,
|
19 |
+
help="Path to a single input img",
|
20 |
+
)
|
21 |
+
parser.add_argument(
|
22 |
+
"--point_coords", type=float, nargs='+', required=True,
|
23 |
+
help="The coordinate of the point prompt, [coord_W coord_H].",
|
24 |
+
)
|
25 |
+
parser.add_argument(
|
26 |
+
"--point_labels", type=int, nargs='+', required=True,
|
27 |
+
help="The labels of the point prompt, 1 or 0.",
|
28 |
+
)
|
29 |
+
parser.add_argument(
|
30 |
+
"--text_prompt", type=str, required=True,
|
31 |
+
help="Text prompt",
|
32 |
+
)
|
33 |
+
parser.add_argument(
|
34 |
+
"--dilate_kernel_size", type=int, default=None,
|
35 |
+
help="Dilate kernel size. Default: None",
|
36 |
+
)
|
37 |
+
parser.add_argument(
|
38 |
+
"--output_dir", type=str, required=True,
|
39 |
+
help="Output path to the directory with results.",
|
40 |
+
)
|
41 |
+
parser.add_argument(
|
42 |
+
"--sam_model_type", type=str,
|
43 |
+
default="vit_h", choices=['vit_h', 'vit_l', 'vit_b'],
|
44 |
+
help="The type of sam model to load. Default: 'vit_h"
|
45 |
+
)
|
46 |
+
parser.add_argument(
|
47 |
+
"--sam_ckpt", type=str, required=True,
|
48 |
+
help="The path to the SAM checkpoint to use for mask generation.",
|
49 |
+
)
|
50 |
+
parser.add_argument(
|
51 |
+
"--seed", type=int,
|
52 |
+
help="Specify seed for reproducibility.",
|
53 |
+
)
|
54 |
+
parser.add_argument(
|
55 |
+
"--deterministic", action="store_true",
|
56 |
+
help="Use deterministic algorithms for reproducibility.",
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
if __name__ == "__main__":
|
62 |
+
"""Example usage:
|
63 |
+
python fill_anything.py \
|
64 |
+
--input_img FA_demo/FA1_dog.png \
|
65 |
+
--point_coords 750 500 \
|
66 |
+
--point_labels 1 \
|
67 |
+
--text_prompt "a teddy bear on a bench" \
|
68 |
+
--dilate_kernel_size 15 \
|
69 |
+
--output_dir ./results \
|
70 |
+
--sam_model_type "vit_h" \
|
71 |
+
--sam_ckpt sam_vit_h_4b8939.pth
|
72 |
+
"""
|
73 |
+
parser = argparse.ArgumentParser()
|
74 |
+
setup_args(parser)
|
75 |
+
args = parser.parse_args(sys.argv[1:])
|
76 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
77 |
+
|
78 |
+
img = load_img_to_array(args.input_img)
|
79 |
+
|
80 |
+
masks, _, _ = predict_masks_with_sam(
|
81 |
+
img,
|
82 |
+
[args.point_coords],
|
83 |
+
args.point_labels,
|
84 |
+
model_type=args.sam_model_type,
|
85 |
+
ckpt_p=args.sam_ckpt,
|
86 |
+
device=device,
|
87 |
+
)
|
88 |
+
masks = masks.astype(np.uint8) * 255
|
89 |
+
|
90 |
+
# dilate mask to avoid unmasked edge effect
|
91 |
+
if args.dilate_kernel_size is not None:
|
92 |
+
masks = [dilate_mask(mask, args.dilate_kernel_size) for mask in masks]
|
93 |
+
|
94 |
+
# visualize the segmentation results
|
95 |
+
img_stem = Path(args.input_img).stem
|
96 |
+
out_dir = Path(args.output_dir) / img_stem
|
97 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
98 |
+
for idx, mask in enumerate(masks):
|
99 |
+
# path to the results
|
100 |
+
mask_p = out_dir / f"mask_{idx}.png"
|
101 |
+
img_points_p = out_dir / f"with_points.png"
|
102 |
+
img_mask_p = out_dir / f"with_{Path(mask_p).name}"
|
103 |
+
|
104 |
+
# save the mask
|
105 |
+
save_array_to_img(mask, mask_p)
|
106 |
+
|
107 |
+
# save the pointed and masked image
|
108 |
+
dpi = plt.rcParams['figure.dpi']
|
109 |
+
height, width = img.shape[:2]
|
110 |
+
plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
|
111 |
+
plt.imshow(img)
|
112 |
+
plt.axis('off')
|
113 |
+
show_points(plt.gca(), [args.point_coords], args.point_labels,
|
114 |
+
size=(width*0.04)**2)
|
115 |
+
plt.savefig(img_points_p, bbox_inches='tight', pad_inches=0)
|
116 |
+
show_mask(plt.gca(), mask, random_color=False)
|
117 |
+
plt.savefig(img_mask_p, bbox_inches='tight', pad_inches=0)
|
118 |
+
plt.close()
|
119 |
+
|
120 |
+
# fill the masked image
|
121 |
+
for idx, mask in enumerate(masks):
|
122 |
+
if args.seed is not None:
|
123 |
+
torch.manual_seed(args.seed)
|
124 |
+
mask_p = out_dir / f"mask_{idx}.png"
|
125 |
+
img_filled_p = out_dir / f"filled_with_{Path(mask_p).name}"
|
126 |
+
img_filled = fill_img_with_sd(
|
127 |
+
img, mask, args.text_prompt, device=device)
|
128 |
+
save_array_to_img(img_filled, img_filled_p)
|
lama_inpaint.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import yaml
|
6 |
+
import glob
|
7 |
+
import argparse
|
8 |
+
from PIL import Image
|
9 |
+
from omegaconf import OmegaConf
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
os.environ['OMP_NUM_THREADS'] = '1'
|
13 |
+
os.environ['OPENBLAS_NUM_THREADS'] = '1'
|
14 |
+
os.environ['MKL_NUM_THREADS'] = '1'
|
15 |
+
os.environ['VECLIB_MAXIMUM_THREADS'] = '1'
|
16 |
+
os.environ['NUMEXPR_NUM_THREADS'] = '1'
|
17 |
+
|
18 |
+
sys.path.insert(0, str(Path(__file__).resolve().parent / "third_party" / "lama"))
|
19 |
+
from saicinpainting.evaluation.utils import move_to_device
|
20 |
+
from saicinpainting.training.trainers import load_checkpoint
|
21 |
+
from saicinpainting.evaluation.data import pad_tensor_to_modulo
|
22 |
+
|
23 |
+
from utils import load_img_to_array, save_array_to_img
|
24 |
+
|
25 |
+
|
26 |
+
@torch.no_grad()
|
27 |
+
def inpaint_img_with_lama(
|
28 |
+
img: np.ndarray,
|
29 |
+
mask: np.ndarray,
|
30 |
+
config_p: str,
|
31 |
+
ckpt_p: str,
|
32 |
+
mod=8,
|
33 |
+
device="cuda"
|
34 |
+
):
|
35 |
+
assert len(mask.shape) == 2
|
36 |
+
if np.max(mask) == 1:
|
37 |
+
mask = mask * 255
|
38 |
+
img = torch.from_numpy(img).float().div(255.)
|
39 |
+
mask = torch.from_numpy(mask).float()
|
40 |
+
predict_config = OmegaConf.load(config_p)
|
41 |
+
predict_config.model.path = ckpt_p
|
42 |
+
# device = torch.device(predict_config.device)
|
43 |
+
device = torch.device(device)
|
44 |
+
|
45 |
+
train_config_path = os.path.join(
|
46 |
+
predict_config.model.path, 'config.yaml')
|
47 |
+
|
48 |
+
with open(train_config_path, 'r') as f:
|
49 |
+
train_config = OmegaConf.create(yaml.safe_load(f))
|
50 |
+
|
51 |
+
train_config.training_model.predict_only = True
|
52 |
+
train_config.visualizer.kind = 'noop'
|
53 |
+
|
54 |
+
checkpoint_path = os.path.join(
|
55 |
+
predict_config.model.path, 'models',
|
56 |
+
predict_config.model.checkpoint
|
57 |
+
)
|
58 |
+
model = load_checkpoint(
|
59 |
+
train_config, checkpoint_path, strict=False, map_location=device)
|
60 |
+
model.freeze()
|
61 |
+
if not predict_config.get('refine', False):
|
62 |
+
model.to(device)
|
63 |
+
|
64 |
+
batch = {}
|
65 |
+
batch['image'] = img.permute(2, 0, 1).unsqueeze(0)
|
66 |
+
batch['mask'] = mask[None, None]
|
67 |
+
unpad_to_size = [batch['image'].shape[2], batch['image'].shape[3]]
|
68 |
+
batch['image'] = pad_tensor_to_modulo(batch['image'], mod)
|
69 |
+
batch['mask'] = pad_tensor_to_modulo(batch['mask'], mod)
|
70 |
+
batch = move_to_device(batch, device)
|
71 |
+
batch['mask'] = (batch['mask'] > 0) * 1
|
72 |
+
|
73 |
+
batch = model(batch)
|
74 |
+
cur_res = batch[predict_config.out_key][0].permute(1, 2, 0)
|
75 |
+
cur_res = cur_res.detach().cpu().numpy()
|
76 |
+
|
77 |
+
if unpad_to_size is not None:
|
78 |
+
orig_height, orig_width = unpad_to_size
|
79 |
+
cur_res = cur_res[:orig_height, :orig_width]
|
80 |
+
|
81 |
+
cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8')
|
82 |
+
return cur_res
|
83 |
+
|
84 |
+
def setup_args(parser):
|
85 |
+
parser.add_argument(
|
86 |
+
"--input_img", type=str, required=True,
|
87 |
+
help="Path to a single input img",
|
88 |
+
)
|
89 |
+
parser.add_argument(
|
90 |
+
"--input_mask_glob", type=str, required=True,
|
91 |
+
help="Glob to input masks",
|
92 |
+
)
|
93 |
+
parser.add_argument(
|
94 |
+
"--output_dir", type=str, required=True,
|
95 |
+
help="Output path to the directory with results.",
|
96 |
+
)
|
97 |
+
parser.add_argument(
|
98 |
+
"--lama_config", type=str,
|
99 |
+
default="./third_party/lama/configs/prediction/default.yaml",
|
100 |
+
help="The path to the config file of lama model. "
|
101 |
+
"Default: the config of big-lama",
|
102 |
+
)
|
103 |
+
parser.add_argument(
|
104 |
+
"--lama_ckpt", type=str, required=True,
|
105 |
+
help="The path to the lama checkpoint.",
|
106 |
+
)
|
107 |
+
|
108 |
+
|
109 |
+
if __name__ == "__main__":
|
110 |
+
"""Example usage:
|
111 |
+
python lama_inpaint.py \
|
112 |
+
--input_img FA_demo/FA1_dog.png \
|
113 |
+
--input_mask_glob "results/FA1_dog/mask*.png" \
|
114 |
+
--output_dir results \
|
115 |
+
--lama_config lama/configs/prediction/default.yaml \
|
116 |
+
--lama_ckpt big-lama
|
117 |
+
"""
|
118 |
+
parser = argparse.ArgumentParser()
|
119 |
+
setup_args(parser)
|
120 |
+
args = parser.parse_args(sys.argv[1:])
|
121 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
122 |
+
|
123 |
+
img_stem = Path(args.input_img).stem
|
124 |
+
mask_ps = sorted(glob.glob(args.input_mask_glob))
|
125 |
+
out_dir = Path(args.output_dir) / img_stem
|
126 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
127 |
+
|
128 |
+
img = load_img_to_array(args.input_img)
|
129 |
+
for mask_p in mask_ps:
|
130 |
+
mask = load_img_to_array(mask_p)
|
131 |
+
img_inpainted_p = out_dir / f"inpainted_with_{Path(mask_p).name}"
|
132 |
+
img_inpainted = inpaint_img_with_lama(
|
133 |
+
img, mask, args.lama_config, args.lama_ckpt, device=device)
|
134 |
+
save_array_to_img(img_inpainted, img_inpainted_p)
|
remove_anything.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import sys
|
3 |
+
import argparse
|
4 |
+
import numpy as np
|
5 |
+
from pathlib import Path
|
6 |
+
from matplotlib import pyplot as plt
|
7 |
+
|
8 |
+
from sam_segment import predict_masks_with_sam
|
9 |
+
from lama_inpaint import inpaint_img_with_lama
|
10 |
+
from utils import load_img_to_array, save_array_to_img, dilate_mask, \
|
11 |
+
show_mask, show_points
|
12 |
+
|
13 |
+
|
14 |
+
def setup_args(parser):
|
15 |
+
parser.add_argument(
|
16 |
+
"--input_img", type=str, required=True,
|
17 |
+
help="Path to a single input img",
|
18 |
+
)
|
19 |
+
parser.add_argument(
|
20 |
+
"--point_coords", type=float, nargs='+', required=True,
|
21 |
+
help="The coordinate of the point prompt, [coord_W coord_H].",
|
22 |
+
)
|
23 |
+
parser.add_argument(
|
24 |
+
"--point_labels", type=int, nargs='+', required=True,
|
25 |
+
help="The labels of the point prompt, 1 or 0.",
|
26 |
+
)
|
27 |
+
parser.add_argument(
|
28 |
+
"--dilate_kernel_size", type=int, default=None,
|
29 |
+
help="Dilate kernel size. Default: None",
|
30 |
+
)
|
31 |
+
parser.add_argument(
|
32 |
+
"--output_dir", type=str, required=True,
|
33 |
+
help="Output path to the directory with results.",
|
34 |
+
)
|
35 |
+
parser.add_argument(
|
36 |
+
"--sam_model_type", type=str,
|
37 |
+
default="vit_h", choices=['vit_h', 'vit_l', 'vit_b'],
|
38 |
+
help="The type of sam model to load. Default: 'vit_h"
|
39 |
+
)
|
40 |
+
parser.add_argument(
|
41 |
+
"--sam_ckpt", type=str, required=True,
|
42 |
+
help="The path to the SAM checkpoint to use for mask generation.",
|
43 |
+
)
|
44 |
+
parser.add_argument(
|
45 |
+
"--lama_config", type=str,
|
46 |
+
default="./lama/configs/prediction/default.yaml",
|
47 |
+
help="The path to the config file of lama model. "
|
48 |
+
"Default: the config of big-lama",
|
49 |
+
)
|
50 |
+
parser.add_argument(
|
51 |
+
"--lama_ckpt", type=str, required=True,
|
52 |
+
help="The path to the lama checkpoint.",
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
if __name__ == "__main__":
|
57 |
+
"""Example usage:
|
58 |
+
python remove_anything.py \
|
59 |
+
--input_img FA_demo/FA1_dog.png \
|
60 |
+
--point_coords 750 500 \
|
61 |
+
--point_labels 1 \
|
62 |
+
--dilate_kernel_size 15 \
|
63 |
+
--output_dir ./results \
|
64 |
+
--sam_model_type "vit_h" \
|
65 |
+
--sam_ckpt sam_vit_h_4b8939.pth \
|
66 |
+
--lama_config lama/configs/prediction/default.yaml \
|
67 |
+
--lama_ckpt big-lama
|
68 |
+
"""
|
69 |
+
parser = argparse.ArgumentParser()
|
70 |
+
setup_args(parser)
|
71 |
+
args = parser.parse_args(sys.argv[1:])
|
72 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
73 |
+
|
74 |
+
img = load_img_to_array(args.input_img)
|
75 |
+
|
76 |
+
masks, _, _ = predict_masks_with_sam(
|
77 |
+
img,
|
78 |
+
[args.point_coords],
|
79 |
+
args.point_labels,
|
80 |
+
model_type=args.sam_model_type,
|
81 |
+
ckpt_p=args.sam_ckpt,
|
82 |
+
device=device,
|
83 |
+
)
|
84 |
+
masks = masks.astype(np.uint8) * 255
|
85 |
+
|
86 |
+
# dilate mask to avoid unmasked edge effect
|
87 |
+
if args.dilate_kernel_size is not None:
|
88 |
+
masks = [dilate_mask(mask, args.dilate_kernel_size) for mask in masks]
|
89 |
+
|
90 |
+
# visualize the segmentation results
|
91 |
+
img_stem = Path(args.input_img).stem
|
92 |
+
out_dir = Path(args.output_dir) / img_stem
|
93 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
94 |
+
for idx, mask in enumerate(masks):
|
95 |
+
# path to the results
|
96 |
+
mask_p = out_dir / f"mask_{idx}.png"
|
97 |
+
img_points_p = out_dir / f"with_points.png"
|
98 |
+
img_mask_p = out_dir / f"with_{Path(mask_p).name}"
|
99 |
+
|
100 |
+
# save the mask
|
101 |
+
save_array_to_img(mask, mask_p)
|
102 |
+
|
103 |
+
# save the pointed and masked image
|
104 |
+
dpi = plt.rcParams['figure.dpi']
|
105 |
+
height, width = img.shape[:2]
|
106 |
+
plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
|
107 |
+
plt.imshow(img)
|
108 |
+
plt.axis('off')
|
109 |
+
show_points(plt.gca(), [args.point_coords], args.point_labels,
|
110 |
+
size=(width*0.04)**2)
|
111 |
+
plt.savefig(img_points_p, bbox_inches='tight', pad_inches=0)
|
112 |
+
show_mask(plt.gca(), mask, random_color=False)
|
113 |
+
plt.savefig(img_mask_p, bbox_inches='tight', pad_inches=0)
|
114 |
+
plt.close()
|
115 |
+
|
116 |
+
# inpaint the masked image
|
117 |
+
for idx, mask in enumerate(masks):
|
118 |
+
mask_p = out_dir / f"mask_{idx}.png"
|
119 |
+
img_inpainted_p = out_dir / f"inpainted_with_{Path(mask_p).name}"
|
120 |
+
img_inpainted = inpaint_img_with_lama(
|
121 |
+
img, mask, args.lama_config, args.lama_ckpt, device=device)
|
122 |
+
save_array_to_img(img_inpainted, img_inpainted_p)
|
replace_anything.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import sys
|
3 |
+
import argparse
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from pathlib import Path
|
7 |
+
from matplotlib import pyplot as plt
|
8 |
+
from typing import Any, Dict, List
|
9 |
+
from sam_segment import predict_masks_with_sam
|
10 |
+
from stable_diffusion_inpaint import replace_img_with_sd
|
11 |
+
from utils import load_img_to_array, save_array_to_img, dilate_mask, \
|
12 |
+
show_mask, show_points
|
13 |
+
|
14 |
+
|
15 |
+
def setup_args(parser):
|
16 |
+
parser.add_argument(
|
17 |
+
"--input_img", type=str, required=True,
|
18 |
+
help="Path to a single input img",
|
19 |
+
)
|
20 |
+
parser.add_argument(
|
21 |
+
"--point_coords", type=float, nargs='+', required=True,
|
22 |
+
help="The coordinate of the point prompt, [coord_W coord_H].",
|
23 |
+
)
|
24 |
+
parser.add_argument(
|
25 |
+
"--point_labels", type=int, nargs='+', required=True,
|
26 |
+
help="The labels of the point prompt, 1 or 0.",
|
27 |
+
)
|
28 |
+
parser.add_argument(
|
29 |
+
"--text_prompt", type=str, required=True,
|
30 |
+
help="Text prompt",
|
31 |
+
)
|
32 |
+
parser.add_argument(
|
33 |
+
"--dilate_kernel_size", type=int, default=None,
|
34 |
+
help="Dilate kernel size. Default: None",
|
35 |
+
)
|
36 |
+
parser.add_argument(
|
37 |
+
"--output_dir", type=str, required=True,
|
38 |
+
help="Output path to the directory with results.",
|
39 |
+
)
|
40 |
+
parser.add_argument(
|
41 |
+
"--sam_model_type", type=str,
|
42 |
+
default="vit_h", choices=['vit_h', 'vit_l', 'vit_b'],
|
43 |
+
help="The type of sam model to load. Default: 'vit_h"
|
44 |
+
)
|
45 |
+
parser.add_argument(
|
46 |
+
"--sam_ckpt", type=str, required=True,
|
47 |
+
help="The path to the SAM checkpoint to use for mask generation.",
|
48 |
+
)
|
49 |
+
parser.add_argument(
|
50 |
+
"--seed", type=int,
|
51 |
+
help="Specify seed for reproducibility.",
|
52 |
+
)
|
53 |
+
parser.add_argument(
|
54 |
+
"--deterministic", action="store_true",
|
55 |
+
help="Use deterministic algorithms for reproducibility.",
|
56 |
+
)
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
if __name__ == "__main__":
|
61 |
+
"""Example usage:
|
62 |
+
python replace_anything.py \
|
63 |
+
--input_img FA_demo/FA1_dog.png \
|
64 |
+
--point_coords 750 500 \
|
65 |
+
--point_labels 1 \
|
66 |
+
--text_prompt "sit on the swing" \
|
67 |
+
--output_dir ./results \
|
68 |
+
--sam_model_type "vit_h" \
|
69 |
+
--sam_ckpt sam_vit_h_4b8939.pth
|
70 |
+
"""
|
71 |
+
parser = argparse.ArgumentParser()
|
72 |
+
setup_args(parser)
|
73 |
+
args = parser.parse_args(sys.argv[1:])
|
74 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
75 |
+
|
76 |
+
img = load_img_to_array(args.input_img)
|
77 |
+
|
78 |
+
masks, _, _ = predict_masks_with_sam(
|
79 |
+
img,
|
80 |
+
[args.point_coords],
|
81 |
+
args.point_labels,
|
82 |
+
model_type=args.sam_model_type,
|
83 |
+
ckpt_p=args.sam_ckpt,
|
84 |
+
device=device,
|
85 |
+
)
|
86 |
+
masks = masks.astype(np.uint8) * 255
|
87 |
+
|
88 |
+
# dilate mask to avoid unmasked edge effect
|
89 |
+
if args.dilate_kernel_size is not None:
|
90 |
+
masks = [dilate_mask(mask, args.dilate_kernel_size) for mask in masks]
|
91 |
+
|
92 |
+
# visualize the segmentation results
|
93 |
+
img_stem = Path(args.input_img).stem
|
94 |
+
out_dir = Path(args.output_dir) / img_stem
|
95 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
96 |
+
for idx, mask in enumerate(masks):
|
97 |
+
# path to the results
|
98 |
+
mask_p = out_dir / f"mask_{idx}.png"
|
99 |
+
img_points_p = out_dir / f"with_points.png"
|
100 |
+
img_mask_p = out_dir / f"with_{Path(mask_p).name}"
|
101 |
+
|
102 |
+
# save the mask
|
103 |
+
save_array_to_img(mask, mask_p)
|
104 |
+
|
105 |
+
# save the pointed and masked image
|
106 |
+
dpi = plt.rcParams['figure.dpi']
|
107 |
+
height, width = img.shape[:2]
|
108 |
+
plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
|
109 |
+
plt.imshow(img)
|
110 |
+
plt.axis('off')
|
111 |
+
show_points(plt.gca(), [args.point_coords], args.point_labels,
|
112 |
+
size=(width*0.04)**2)
|
113 |
+
plt.savefig(img_points_p, bbox_inches='tight', pad_inches=0)
|
114 |
+
show_mask(plt.gca(), mask, random_color=False)
|
115 |
+
plt.savefig(img_mask_p, bbox_inches='tight', pad_inches=0)
|
116 |
+
plt.close()
|
117 |
+
|
118 |
+
# fill the masked image
|
119 |
+
for idx, mask in enumerate(masks):
|
120 |
+
if args.seed is not None:
|
121 |
+
torch.manual_seed(args.seed)
|
122 |
+
mask_p = out_dir / f"mask_{idx}.png"
|
123 |
+
img_replaced_p = out_dir / f"replaced_with_{Path(mask_p).name}"
|
124 |
+
img_replaced = replace_img_with_sd(
|
125 |
+
img, mask, args.text_prompt, device=device)
|
126 |
+
save_array_to_img(img_replaced, img_replaced_p)
|
sam_segment.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import argparse
|
3 |
+
import numpy as np
|
4 |
+
from pathlib import Path
|
5 |
+
from matplotlib import pyplot as plt
|
6 |
+
from typing import Any, Dict, List
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from segment_anything import SamPredictor, sam_model_registry
|
10 |
+
from utils import load_img_to_array, save_array_to_img, dilate_mask, \
|
11 |
+
show_mask, show_points
|
12 |
+
|
13 |
+
|
14 |
+
def predict_masks_with_sam(
|
15 |
+
img: np.ndarray,
|
16 |
+
point_coords: List[List[float]],
|
17 |
+
point_labels: List[int],
|
18 |
+
model_type: str,
|
19 |
+
ckpt_p: str,
|
20 |
+
device="cuda"
|
21 |
+
):
|
22 |
+
point_coords = np.array(point_coords)
|
23 |
+
point_labels = np.array(point_labels)
|
24 |
+
sam = sam_model_registry[model_type](checkpoint=ckpt_p)
|
25 |
+
sam.to(device=device)
|
26 |
+
predictor = SamPredictor(sam)
|
27 |
+
|
28 |
+
predictor.set_image(img)
|
29 |
+
masks, scores, logits = predictor.predict(
|
30 |
+
point_coords=point_coords,
|
31 |
+
point_labels=point_labels,
|
32 |
+
multimask_output=True,
|
33 |
+
)
|
34 |
+
return masks, scores, logits
|
35 |
+
|
36 |
+
|
37 |
+
def setup_args(parser):
|
38 |
+
parser.add_argument(
|
39 |
+
"--input_img", type=str, required=True,
|
40 |
+
help="Path to a single input img",
|
41 |
+
)
|
42 |
+
parser.add_argument(
|
43 |
+
"--point_coords", type=float, nargs='+', required=True,
|
44 |
+
help="The coordinate of the point prompt, [coord_W coord_H].",
|
45 |
+
)
|
46 |
+
parser.add_argument(
|
47 |
+
"--point_labels", type=int, nargs='+', required=True,
|
48 |
+
help="The labels of the point prompt, 1 or 0.",
|
49 |
+
)
|
50 |
+
parser.add_argument(
|
51 |
+
"--dilate_kernel_size", type=int, default=None,
|
52 |
+
help="Dilate kernel size. Default: None",
|
53 |
+
)
|
54 |
+
parser.add_argument(
|
55 |
+
"--output_dir", type=str, required=True,
|
56 |
+
help="Output path to the directory with results.",
|
57 |
+
)
|
58 |
+
parser.add_argument(
|
59 |
+
"--sam_model_type", type=str,
|
60 |
+
default="vit_h", choices=['vit_h', 'vit_l', 'vit_b'],
|
61 |
+
help="The type of sam model to load. Default: 'vit_h"
|
62 |
+
)
|
63 |
+
parser.add_argument(
|
64 |
+
"--sam_ckpt", type=str, required=True,
|
65 |
+
help="The path to the SAM checkpoint to use for mask generation.",
|
66 |
+
)
|
67 |
+
|
68 |
+
|
69 |
+
if __name__ == "__main__":
|
70 |
+
"""Example usage:
|
71 |
+
python sam_segment.py \
|
72 |
+
--input_img FA_demo/FA1_dog.png \
|
73 |
+
--point_coords 750 500 \
|
74 |
+
--point_labels 1 \
|
75 |
+
--dilate_kernel_size 15 \
|
76 |
+
--output_dir ./results \
|
77 |
+
--sam_model_type "vit_h" \
|
78 |
+
--sam_ckpt sam_vit_h_4b8939.pth
|
79 |
+
"""
|
80 |
+
parser = argparse.ArgumentParser()
|
81 |
+
setup_args(parser)
|
82 |
+
args = parser.parse_args(sys.argv[1:])
|
83 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
84 |
+
|
85 |
+
img = load_img_to_array(args.input_img)
|
86 |
+
|
87 |
+
masks, _, _ = predict_masks_with_sam(
|
88 |
+
img,
|
89 |
+
[args.point_coords],
|
90 |
+
args.point_labels,
|
91 |
+
model_type=args.sam_model_type,
|
92 |
+
ckpt_p=args.sam_ckpt,
|
93 |
+
device=device,
|
94 |
+
)
|
95 |
+
masks = masks.astype(np.uint8) * 255
|
96 |
+
|
97 |
+
# dilate mask to avoid unmasked edge effect
|
98 |
+
if args.dilate_kernel_size is not None:
|
99 |
+
masks = [dilate_mask(mask, args.dilate_kernel_size) for mask in masks]
|
100 |
+
|
101 |
+
# visualize the segmentation results
|
102 |
+
img_stem = Path(args.input_img).stem
|
103 |
+
out_dir = Path(args.output_dir) / img_stem
|
104 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
105 |
+
for idx, mask in enumerate(masks):
|
106 |
+
# path to the results
|
107 |
+
mask_p = out_dir / f"mask_{idx}.png"
|
108 |
+
img_points_p = out_dir / f"with_points.png"
|
109 |
+
img_mask_p = out_dir / f"with_{Path(mask_p).name}"
|
110 |
+
|
111 |
+
# save the mask
|
112 |
+
save_array_to_img(mask, mask_p)
|
113 |
+
|
114 |
+
# save the pointed and masked image
|
115 |
+
dpi = plt.rcParams['figure.dpi']
|
116 |
+
height, width = img.shape[:2]
|
117 |
+
plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
|
118 |
+
plt.imshow(img)
|
119 |
+
plt.axis('off')
|
120 |
+
show_points(plt.gca(), [args.point_coords], args.point_labels,
|
121 |
+
size=(width*0.04)**2)
|
122 |
+
plt.savefig(img_points_p, bbox_inches='tight', pad_inches=0)
|
123 |
+
show_mask(plt.gca(), mask, random_color=False)
|
124 |
+
plt.savefig(img_mask_p, bbox_inches='tight', pad_inches=0)
|
125 |
+
plt.close()
|
stable_diffusion_inpaint.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import glob
|
4 |
+
import argparse
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
import PIL.Image as Image
|
8 |
+
from pathlib import Path
|
9 |
+
from diffusers import StableDiffusionInpaintPipeline
|
10 |
+
from utils.mask_processing import crop_for_filling_pre, crop_for_filling_post
|
11 |
+
from utils.crop_for_replacing import recover_size, resize_and_pad
|
12 |
+
from utils import load_img_to_array, save_array_to_img
|
13 |
+
|
14 |
+
|
15 |
+
def fill_img_with_sd(
|
16 |
+
img: np.ndarray,
|
17 |
+
mask: np.ndarray,
|
18 |
+
text_prompt: str,
|
19 |
+
device="cuda"
|
20 |
+
):
|
21 |
+
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
22 |
+
"stabilityai/stable-diffusion-2-inpainting",
|
23 |
+
torch_dtype=torch.float32,
|
24 |
+
).to(device)
|
25 |
+
img_crop, mask_crop = crop_for_filling_pre(img, mask)
|
26 |
+
img_crop_filled = pipe(
|
27 |
+
prompt=text_prompt,
|
28 |
+
image=Image.fromarray(img_crop),
|
29 |
+
mask_image=Image.fromarray(mask_crop)
|
30 |
+
).images[0]
|
31 |
+
img_filled = crop_for_filling_post(img, mask, np.array(img_crop_filled))
|
32 |
+
return img_filled
|
33 |
+
|
34 |
+
|
35 |
+
def replace_img_with_sd(
|
36 |
+
img: np.ndarray,
|
37 |
+
mask: np.ndarray,
|
38 |
+
text_prompt: str,
|
39 |
+
step: int = 50,
|
40 |
+
device="cuda"
|
41 |
+
):
|
42 |
+
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
43 |
+
"stabilityai/stable-diffusion-2-inpainting",
|
44 |
+
torch_dtype=torch.float32,
|
45 |
+
).to(device)
|
46 |
+
img_padded, mask_padded, padding_factors = resize_and_pad(img, mask)
|
47 |
+
img_padded = pipe(
|
48 |
+
prompt=text_prompt,
|
49 |
+
image=Image.fromarray(img_padded),
|
50 |
+
mask_image=Image.fromarray(255 - mask_padded),
|
51 |
+
num_inference_steps=step,
|
52 |
+
).images[0]
|
53 |
+
height, width, _ = img.shape
|
54 |
+
img_resized, mask_resized = recover_size(
|
55 |
+
np.array(img_padded), mask_padded, (height, width), padding_factors)
|
56 |
+
mask_resized = np.expand_dims(mask_resized, -1) / 255
|
57 |
+
img_resized = img_resized * (1-mask_resized) + img * mask_resized
|
58 |
+
return img_resized
|
59 |
+
|
60 |
+
|
61 |
+
def setup_args(parser):
|
62 |
+
parser.add_argument(
|
63 |
+
"--input_img", type=str, required=True,
|
64 |
+
help="Path to a single input img",
|
65 |
+
)
|
66 |
+
parser.add_argument(
|
67 |
+
"--text_prompt", type=str, required=True,
|
68 |
+
help="Text prompt",
|
69 |
+
)
|
70 |
+
parser.add_argument(
|
71 |
+
"--input_mask_glob", type=str, required=True,
|
72 |
+
help="Glob to input masks",
|
73 |
+
)
|
74 |
+
parser.add_argument(
|
75 |
+
"--output_dir", type=str, required=True,
|
76 |
+
help="Output path to the directory with results.",
|
77 |
+
)
|
78 |
+
parser.add_argument(
|
79 |
+
"--seed", type=int,
|
80 |
+
help="Specify seed for reproducibility.",
|
81 |
+
)
|
82 |
+
parser.add_argument(
|
83 |
+
"--deterministic", action="store_true",
|
84 |
+
help="Use deterministic algorithms for reproducibility.",
|
85 |
+
)
|
86 |
+
|
87 |
+
if __name__ == "__main__":
|
88 |
+
"""Example usage:
|
89 |
+
python lama_inpaint.py \
|
90 |
+
--input_img FA_demo/FA1_dog.png \
|
91 |
+
--input_mask_glob "results/FA1_dog/mask*.png" \
|
92 |
+
--text_prompt "a teddy bear on a bench" \
|
93 |
+
--output_dir results
|
94 |
+
"""
|
95 |
+
parser = argparse.ArgumentParser()
|
96 |
+
setup_args(parser)
|
97 |
+
args = parser.parse_args(sys.argv[1:])
|
98 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
99 |
+
|
100 |
+
if args.deterministic:
|
101 |
+
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
|
102 |
+
torch.use_deterministic_algorithms(True)
|
103 |
+
|
104 |
+
img_stem = Path(args.input_img).stem
|
105 |
+
mask_ps = sorted(glob.glob(args.input_mask_glob))
|
106 |
+
out_dir = Path(args.output_dir) / img_stem
|
107 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
108 |
+
|
109 |
+
img = load_img_to_array(args.input_img)
|
110 |
+
for mask_p in mask_ps:
|
111 |
+
if args.seed is not None:
|
112 |
+
torch.manual_seed(args.seed)
|
113 |
+
mask = load_img_to_array(mask_p)
|
114 |
+
img_filled_p = out_dir / f"filled_with_{Path(mask_p).name}"
|
115 |
+
img_filled = fill_img_with_sd(
|
116 |
+
img, mask, args.text_prompt, device=device)
|
117 |
+
save_array_to_img(img_filled, img_filled_p)
|
utils/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .utils import *
|
utils/crop_for_replacing.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from typing import Tuple
|
4 |
+
|
5 |
+
def resize_and_pad(image: np.ndarray, mask: np.ndarray, target_size: int = 512) -> Tuple[np.ndarray, np.ndarray]:
|
6 |
+
"""
|
7 |
+
Resizes an image and its corresponding mask to have the longer side equal to `target_size` and pads them to make them
|
8 |
+
both have the same size. The resulting image and mask have dimensions (target_size, target_size).
|
9 |
+
|
10 |
+
Args:
|
11 |
+
image: A numpy array representing the image to resize and pad.
|
12 |
+
mask: A numpy array representing the mask to resize and pad.
|
13 |
+
target_size: An integer specifying the desired size of the longer side after resizing.
|
14 |
+
|
15 |
+
Returns:
|
16 |
+
A tuple containing two numpy arrays - the resized and padded image and the resized and padded mask.
|
17 |
+
"""
|
18 |
+
height, width, _ = image.shape
|
19 |
+
max_dim = max(height, width)
|
20 |
+
scale = target_size / max_dim
|
21 |
+
new_height = int(height * scale)
|
22 |
+
new_width = int(width * scale)
|
23 |
+
image_resized = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_LINEAR)
|
24 |
+
mask_resized = cv2.resize(mask, (new_width, new_height), interpolation=cv2.INTER_LINEAR)
|
25 |
+
pad_height = target_size - new_height
|
26 |
+
pad_width = target_size - new_width
|
27 |
+
top_pad = pad_height // 2
|
28 |
+
bottom_pad = pad_height - top_pad
|
29 |
+
left_pad = pad_width // 2
|
30 |
+
right_pad = pad_width - left_pad
|
31 |
+
image_padded = np.pad(image_resized, ((top_pad, bottom_pad), (left_pad, right_pad), (0, 0)), mode='constant')
|
32 |
+
mask_padded = np.pad(mask_resized, ((top_pad, bottom_pad), (left_pad, right_pad)), mode='constant')
|
33 |
+
return image_padded, mask_padded, (top_pad, bottom_pad, left_pad, right_pad)
|
34 |
+
|
35 |
+
def recover_size(image_padded: np.ndarray, mask_padded: np.ndarray, orig_size: Tuple[int, int],
|
36 |
+
padding_factors: Tuple[int, int, int, int]) -> Tuple[np.ndarray, np.ndarray]:
|
37 |
+
"""
|
38 |
+
Resizes a padded and resized image and mask to the original size.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
image_padded: A numpy array representing the padded and resized image.
|
42 |
+
mask_padded: A numpy array representing the padded and resized mask.
|
43 |
+
orig_size: A tuple containing two integers - the original height and width of the image before resizing and padding.
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
A tuple containing two numpy arrays - the recovered image and the recovered mask with dimensions `orig_size`.
|
47 |
+
"""
|
48 |
+
h,w,c = image_padded.shape
|
49 |
+
top_pad, bottom_pad, left_pad, right_pad = padding_factors
|
50 |
+
image = image_padded[top_pad:h-bottom_pad, left_pad:w-right_pad, :]
|
51 |
+
mask = mask_padded[top_pad:h-bottom_pad, left_pad:w-right_pad]
|
52 |
+
image_resized = cv2.resize(image, orig_size[::-1], interpolation=cv2.INTER_LINEAR)
|
53 |
+
mask_resized = cv2.resize(mask, orig_size[::-1], interpolation=cv2.INTER_LINEAR)
|
54 |
+
return image_resized, mask_resized
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
if __name__ == '__main__':
|
60 |
+
|
61 |
+
# image = cv2.imread('example/boat.jpg')
|
62 |
+
# mask = cv2.imread('example/boat_mask_2.png', cv2.IMREAD_GRAYSCALE)
|
63 |
+
# image = cv2.imread('example/groceries.jpg')
|
64 |
+
# mask = cv2.imread('example/groceries_mask_2.png', cv2.IMREAD_GRAYSCALE)
|
65 |
+
# image = cv2.imread('example/bridge.jpg')
|
66 |
+
# mask = cv2.imread('example/bridge_mask_2.png', cv2.IMREAD_GRAYSCALE)
|
67 |
+
# image = cv2.imread('example/person_umbrella.jpg')
|
68 |
+
# mask = cv2.imread('example/person_umbrella_mask_2.png', cv2.IMREAD_GRAYSCALE)
|
69 |
+
# image = cv2.imread('example/hippopotamus.jpg')
|
70 |
+
# mask = cv2.imread('example/hippopotamus_mask_1.png', cv2.IMREAD_GRAYSCALE)
|
71 |
+
image = cv2.imread('/data1/yutao/projects/IAM/Inpaint-Anything/example/fill-anything/sample5.jpeg')
|
72 |
+
mask = cv2.imread('/data1/yutao/projects/IAM/Inpaint-Anything/example/fill-anything/sample5/mask.png', cv2.IMREAD_GRAYSCALE)
|
73 |
+
print(image.shape)
|
74 |
+
print(mask.shape)
|
75 |
+
cv2.imwrite('original_image.jpg', image)
|
76 |
+
cv2.imwrite('original_mask.jpg', mask)
|
77 |
+
image_padded, mask_padded, padding_factors = resize_and_pad(image, mask)
|
78 |
+
cv2.imwrite('padded_image.png', image_padded)
|
79 |
+
cv2.imwrite('padded_mask.png', mask_padded)
|
80 |
+
print(image_padded.shape, mask_padded.shape, padding_factors)
|
81 |
+
|
82 |
+
# ^ ------------------------------------------------------------------------------------
|
83 |
+
# ^ Please conduct inpainting or filling here on the cropped image with the cropped mask
|
84 |
+
# ^ ------------------------------------------------------------------------------------
|
85 |
+
|
86 |
+
# resize and pad the image and mask
|
87 |
+
|
88 |
+
# perform some operation on the 512x512 image and mask
|
89 |
+
# ...
|
90 |
+
|
91 |
+
# recover the image and mask to the original size
|
92 |
+
height, width, _ = image.shape
|
93 |
+
image_resized, mask_resized = recover_size(image_padded, mask_padded, (height, width), padding_factors)
|
94 |
+
|
95 |
+
# save the resized and recovered image and mask
|
96 |
+
cv2.imwrite('resized_and_padded_image.png', image_padded)
|
97 |
+
cv2.imwrite('resized_and_padded_mask.png', mask_padded)
|
98 |
+
cv2.imwrite('recovered_image.png', image_resized)
|
99 |
+
cv2.imwrite('recovered_mask.png', mask_resized)
|
100 |
+
|
101 |
+
|
utils/get_point_coor.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
|
3 |
+
def click_event(event, x, y, flags, param):
|
4 |
+
if event == cv2.EVENT_LBUTTONDOWN:
|
5 |
+
print("Point coordinates ({}, {})".format(x, y))
|
6 |
+
img = cv2.imread("./example/remove-anything/dog.jpg")
|
7 |
+
|
8 |
+
cv2.imshow("Image", img)
|
9 |
+
cv2.setMouseCallback("Image", click_event)
|
10 |
+
cv2.waitKey(0)
|
11 |
+
|
12 |
+
cv2.destroyAllWindows()
|
utils/mask_processing.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
from matplotlib import pyplot as plt
|
3 |
+
import PIL.Image as Image
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
def crop_for_filling_pre(image: np.array, mask: np.array, crop_size: int = 512):
|
8 |
+
# Calculate the aspect ratio of the image
|
9 |
+
height, width = image.shape[:2]
|
10 |
+
aspect_ratio = float(width) / float(height)
|
11 |
+
|
12 |
+
# If the shorter side is less than 512, resize the image proportionally
|
13 |
+
if min(height, width) < crop_size:
|
14 |
+
if height < width:
|
15 |
+
new_height = crop_size
|
16 |
+
new_width = int(new_height * aspect_ratio)
|
17 |
+
else:
|
18 |
+
new_width = crop_size
|
19 |
+
new_height = int(new_width / aspect_ratio)
|
20 |
+
|
21 |
+
image = cv2.resize(image, (new_width, new_height))
|
22 |
+
mask = cv2.resize(mask, (new_width, new_height))
|
23 |
+
|
24 |
+
# Find the bounding box of the mask
|
25 |
+
x, y, w, h = cv2.boundingRect(mask)
|
26 |
+
|
27 |
+
# Update the height and width of the resized image
|
28 |
+
height, width = image.shape[:2]
|
29 |
+
|
30 |
+
# # If the 512x512 square cannot cover the entire mask, resize the image accordingly
|
31 |
+
if w > crop_size or h > crop_size:
|
32 |
+
# padding to square at first
|
33 |
+
if height < width:
|
34 |
+
padding = width - height
|
35 |
+
image = np.pad(image, ((padding // 2, padding - padding // 2), (0, 0), (0, 0)), 'constant')
|
36 |
+
mask = np.pad(mask, ((padding // 2, padding - padding // 2), (0, 0)), 'constant')
|
37 |
+
else:
|
38 |
+
padding = height - width
|
39 |
+
image = np.pad(image, ((0, 0), (padding // 2, padding - padding // 2), (0, 0)), 'constant')
|
40 |
+
mask = np.pad(mask, ((0, 0), (padding // 2, padding - padding // 2)), 'constant')
|
41 |
+
|
42 |
+
resize_factor = crop_size / max(w, h)
|
43 |
+
image = cv2.resize(image, (0, 0), fx=resize_factor, fy=resize_factor)
|
44 |
+
mask = cv2.resize(mask, (0, 0), fx=resize_factor, fy=resize_factor)
|
45 |
+
x, y, w, h = cv2.boundingRect(mask)
|
46 |
+
|
47 |
+
# Calculate the crop coordinates
|
48 |
+
crop_x = min(max(x + w // 2 - crop_size // 2, 0), width - crop_size)
|
49 |
+
crop_y = min(max(y + h // 2 - crop_size // 2, 0), height - crop_size)
|
50 |
+
|
51 |
+
# Crop the image
|
52 |
+
cropped_image = image[crop_y:crop_y + crop_size, crop_x:crop_x + crop_size]
|
53 |
+
cropped_mask = mask[crop_y:crop_y + crop_size, crop_x:crop_x + crop_size]
|
54 |
+
|
55 |
+
return cropped_image, cropped_mask
|
56 |
+
|
57 |
+
|
58 |
+
def crop_for_filling_post(
|
59 |
+
image: np.array,
|
60 |
+
mask: np.array,
|
61 |
+
filled_image: np.array,
|
62 |
+
crop_size: int = 512,
|
63 |
+
):
|
64 |
+
image_copy = image.copy()
|
65 |
+
mask_copy = mask.copy()
|
66 |
+
# Calculate the aspect ratio of the image
|
67 |
+
height, width = image.shape[:2]
|
68 |
+
height_ori, width_ori = height, width
|
69 |
+
aspect_ratio = float(width) / float(height)
|
70 |
+
|
71 |
+
# If the shorter side is less than 512, resize the image proportionally
|
72 |
+
if min(height, width) < crop_size:
|
73 |
+
if height < width:
|
74 |
+
new_height = crop_size
|
75 |
+
new_width = int(new_height * aspect_ratio)
|
76 |
+
else:
|
77 |
+
new_width = crop_size
|
78 |
+
new_height = int(new_width / aspect_ratio)
|
79 |
+
|
80 |
+
image = cv2.resize(image, (new_width, new_height))
|
81 |
+
mask = cv2.resize(mask, (new_width, new_height))
|
82 |
+
|
83 |
+
# Find the bounding box of the mask
|
84 |
+
x, y, w, h = cv2.boundingRect(mask)
|
85 |
+
|
86 |
+
# Update the height and width of the resized image
|
87 |
+
height, width = image.shape[:2]
|
88 |
+
|
89 |
+
# # If the 512x512 square cannot cover the entire mask, resize the image accordingly
|
90 |
+
if w > crop_size or h > crop_size:
|
91 |
+
flag_padding = True
|
92 |
+
# padding to square at first
|
93 |
+
if height < width:
|
94 |
+
padding = width - height
|
95 |
+
image = np.pad(image, ((padding // 2, padding - padding // 2), (0, 0), (0, 0)), 'constant')
|
96 |
+
mask = np.pad(mask, ((padding // 2, padding - padding // 2), (0, 0)), 'constant')
|
97 |
+
padding_side = 'h'
|
98 |
+
else:
|
99 |
+
padding = height - width
|
100 |
+
image = np.pad(image, ((0, 0), (padding // 2, padding - padding // 2), (0, 0)), 'constant')
|
101 |
+
mask = np.pad(mask, ((0, 0), (padding // 2, padding - padding // 2)), 'constant')
|
102 |
+
padding_side = 'w'
|
103 |
+
|
104 |
+
resize_factor = crop_size / max(w, h)
|
105 |
+
image = cv2.resize(image, (0, 0), fx=resize_factor, fy=resize_factor)
|
106 |
+
mask = cv2.resize(mask, (0, 0), fx=resize_factor, fy=resize_factor)
|
107 |
+
x, y, w, h = cv2.boundingRect(mask)
|
108 |
+
else:
|
109 |
+
flag_padding = False
|
110 |
+
|
111 |
+
# Calculate the crop coordinates
|
112 |
+
crop_x = min(max(x + w // 2 - crop_size // 2, 0), width - crop_size)
|
113 |
+
crop_y = min(max(y + h // 2 - crop_size // 2, 0), height - crop_size)
|
114 |
+
|
115 |
+
# Fill the image
|
116 |
+
image[crop_y:crop_y + crop_size, crop_x:crop_x + crop_size] = filled_image
|
117 |
+
if flag_padding:
|
118 |
+
image = cv2.resize(image, (0, 0), fx=1/resize_factor, fy=1/resize_factor)
|
119 |
+
if padding_side == 'h':
|
120 |
+
image = image[padding // 2:padding // 2 + height_ori, :]
|
121 |
+
else:
|
122 |
+
image = image[:, padding // 2:padding // 2 + width_ori]
|
123 |
+
|
124 |
+
image = cv2.resize(image, (width_ori, height_ori))
|
125 |
+
|
126 |
+
image_copy[mask_copy==255] = image[mask_copy==255]
|
127 |
+
return image_copy
|
128 |
+
|
129 |
+
|
130 |
+
if __name__ == '__main__':
|
131 |
+
|
132 |
+
# image = cv2.imread('example/boat.jpg')
|
133 |
+
# mask = cv2.imread('example/boat_mask_2.png', cv2.IMREAD_GRAYSCALE)
|
134 |
+
image = cv2.imread('./example/groceries.jpg')
|
135 |
+
mask = cv2.imread('example/groceries_mask_2.png', cv2.IMREAD_GRAYSCALE)
|
136 |
+
# image = cv2.imread('example/bridge.jpg')
|
137 |
+
# mask = cv2.imread('example/bridge_mask_2.png', cv2.IMREAD_GRAYSCALE)
|
138 |
+
# image = cv2.imread('example/person_umbrella.jpg')
|
139 |
+
# mask = cv2.imread('example/person_umbrella_mask_2.png', cv2.IMREAD_GRAYSCALE)
|
140 |
+
# image = cv2.imread('example/hippopotamus.jpg')
|
141 |
+
# mask = cv2.imread('example/hippopotamus_mask_1.png', cv2.IMREAD_GRAYSCALE)
|
142 |
+
|
143 |
+
cropped_image, cropped_mask = crop_for_filling_pre(image, mask)
|
144 |
+
# ^ ------------------------------------------------------------------------------------
|
145 |
+
# ^ Please conduct inpainting or filling here on the cropped image with the cropped mask
|
146 |
+
# ^ ------------------------------------------------------------------------------------
|
147 |
+
|
148 |
+
# e.g.
|
149 |
+
# cropped_image[cropped_mask==255] = 0
|
150 |
+
cv2.imwrite('cropped_image.jpg', cropped_image)
|
151 |
+
cv2.imwrite('cropped_mask.jpg', cropped_mask)
|
152 |
+
print(cropped_image.shape)
|
153 |
+
print(cropped_mask.shape)
|
154 |
+
|
155 |
+
image = crop_for_filling_post(image, mask, cropped_image)
|
156 |
+
cv2.imwrite('filled_image.jpg', image)
|
157 |
+
print(image.shape)
|
158 |
+
|
159 |
+
|
160 |
+
|
utils/paste_object.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
def paste_object(source, source_mask, target, target_coords, resize_scale=1):
|
5 |
+
assert target_coords[0] < target.shape[1] and target_coords[1] < target.shape[0]
|
6 |
+
# Find the bounding box of the source_mask
|
7 |
+
x, y, w, h = cv2.boundingRect(source_mask)
|
8 |
+
assert h < source.shape[0] and w < source.shape[1]
|
9 |
+
obj = source[y:y+h, x:x+w]
|
10 |
+
obj_msk = source_mask[y:y+h, x:x+w]
|
11 |
+
if resize_scale != 1:
|
12 |
+
obj = cv2.resize(obj, (0,0), fx=resize_scale, fy=resize_scale)
|
13 |
+
obj_msk = cv2.resize(obj_msk, (0,0), fx=resize_scale, fy=resize_scale)
|
14 |
+
_, _, w, h = cv2.boundingRect(obj_msk)
|
15 |
+
|
16 |
+
xt = max(0, target_coords[0]-w//2)
|
17 |
+
yt = max(0, target_coords[1]-h//2)
|
18 |
+
if target_coords[0]-w//2 < 0:
|
19 |
+
obj = obj[:, w//2-target_coords[0]:]
|
20 |
+
obj_msk = obj_msk[:, w//2-target_coords[0]:]
|
21 |
+
if target_coords[0]+w//2 > target.shape[1]:
|
22 |
+
obj = obj[:, :target.shape[1]-target_coords[0]+w//2]
|
23 |
+
obj_msk = obj_msk[:, :target.shape[1]-target_coords[0]+w//2]
|
24 |
+
if target_coords[1]-h//2 < 0:
|
25 |
+
obj = obj[h//2-target_coords[1]:, :]
|
26 |
+
obj_msk = obj_msk[h//2-target_coords[1]:, :]
|
27 |
+
if target_coords[1]+h//2 > target.shape[0]:
|
28 |
+
obj = obj[:target.shape[0]-target_coords[1]+h//2, :]
|
29 |
+
obj_msk = obj_msk[:target.shape[0]-target_coords[1]+h//2, :]
|
30 |
+
_, _, w, h = cv2.boundingRect(obj_msk)
|
31 |
+
|
32 |
+
target[yt:yt+h, xt:xt+w][obj_msk==255] = obj[obj_msk==255]
|
33 |
+
target_mask = np.zeros_like(target)
|
34 |
+
target_mask = cv2.cvtColor(target_mask, cv2.COLOR_BGR2GRAY)
|
35 |
+
target_mask[yt:yt+h, xt:xt+w][obj_msk==255] = 255
|
36 |
+
|
37 |
+
return target, target_mask
|
38 |
+
|
39 |
+
if __name__ == '__main__':
|
40 |
+
source = cv2.imread('example/boat.jpg')
|
41 |
+
source_mask = cv2.imread('example/boat_mask_1.png', 0)
|
42 |
+
target = cv2.imread('example/hippopotamus.jpg')
|
43 |
+
print(source.shape, source_mask.shape, target.shape)
|
44 |
+
|
45 |
+
target_coords = (700, 400) # (x, y)
|
46 |
+
resize_scale = 1
|
47 |
+
target, target_mask = paste_object(source, source_mask, target, target_coords, resize_scale)
|
48 |
+
cv2.imwrite('target_pasted.png', target)
|
49 |
+
cv2.imwrite('target_mask.png', target_mask)
|
50 |
+
print(target.shape, target_mask.shape)
|
utils/utils.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
from typing import Any, Dict, List
|
5 |
+
|
6 |
+
|
7 |
+
def load_img_to_array(img_p):
|
8 |
+
return np.array(Image.open(img_p))
|
9 |
+
|
10 |
+
|
11 |
+
def save_array_to_img(img_arr, img_p):
|
12 |
+
Image.fromarray(img_arr.astype(np.uint8)).save(img_p)
|
13 |
+
|
14 |
+
|
15 |
+
def dilate_mask(mask, dilate_factor=15):
|
16 |
+
mask = mask.astype(np.uint8)
|
17 |
+
mask = cv2.dilate(
|
18 |
+
mask,
|
19 |
+
np.ones((dilate_factor, dilate_factor), np.uint8),
|
20 |
+
iterations=1
|
21 |
+
)
|
22 |
+
return mask
|
23 |
+
|
24 |
+
def erode_mask(mask, dilate_factor=15):
|
25 |
+
mask = mask.astype(np.uint8)
|
26 |
+
mask = cv2.erode(
|
27 |
+
mask,
|
28 |
+
np.ones((dilate_factor, dilate_factor), np.uint8),
|
29 |
+
iterations=1
|
30 |
+
)
|
31 |
+
return mask
|
32 |
+
|
33 |
+
def show_mask(ax, mask: np.ndarray, random_color=False):
|
34 |
+
mask = mask.astype(np.uint8)
|
35 |
+
if np.max(mask) == 255:
|
36 |
+
mask = mask / 255
|
37 |
+
if random_color:
|
38 |
+
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
39 |
+
else:
|
40 |
+
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
|
41 |
+
h, w = mask.shape[-2:]
|
42 |
+
mask_img = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
43 |
+
ax.imshow(mask_img)
|
44 |
+
|
45 |
+
|
46 |
+
def show_points(ax, coords: List[List[float]], labels: List[int], size=375):
|
47 |
+
coords = np.array(coords)
|
48 |
+
labels = np.array(labels)
|
49 |
+
color_table = {0: 'red', 1: 'green'}
|
50 |
+
for label_value, color in color_table.items():
|
51 |
+
points = coords[labels == label_value]
|
52 |
+
ax.scatter(points[:, 0], points[:, 1], color=color, marker='*',
|
53 |
+
s=size, edgecolor='white', linewidth=1.25)
|
utils/visual_mask_on_img.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import sys
|
3 |
+
import argparse
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from pathlib import Path
|
7 |
+
from matplotlib import pyplot as plt
|
8 |
+
from typing import Any, Dict, List
|
9 |
+
import glob
|
10 |
+
|
11 |
+
from utils import load_img_to_array, show_mask
|
12 |
+
|
13 |
+
|
14 |
+
def setup_args(parser):
|
15 |
+
parser.add_argument(
|
16 |
+
"--input_img", type=str, required=True,
|
17 |
+
help="Path to a single input img",
|
18 |
+
)
|
19 |
+
parser.add_argument(
|
20 |
+
"--input_mask_glob", type=str, required=True,
|
21 |
+
help="Glob to input masks",
|
22 |
+
)
|
23 |
+
parser.add_argument(
|
24 |
+
"--output_dir", type=str, required=True,
|
25 |
+
help="Output path to the directory with results.",
|
26 |
+
)
|
27 |
+
|
28 |
+
if __name__ == "__main__":
|
29 |
+
"""Example usage:
|
30 |
+
python visual_mask_on_img.py \
|
31 |
+
--input_img FA_demo/FA1_dog.png \
|
32 |
+
--input_mask_glob "results/FA1_dog/mask*.png" \
|
33 |
+
--output_dir results
|
34 |
+
"""
|
35 |
+
parser = argparse.ArgumentParser()
|
36 |
+
setup_args(parser)
|
37 |
+
args = parser.parse_args(sys.argv[1:])
|
38 |
+
|
39 |
+
img = load_img_to_array(args.input_img)
|
40 |
+
img_stem = Path(args.input_img).stem
|
41 |
+
|
42 |
+
mask_ps = sorted(glob.glob(args.input_mask_glob))
|
43 |
+
|
44 |
+
out_dir = Path(args.output_dir) / img_stem
|
45 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
46 |
+
|
47 |
+
for mask_p in mask_ps:
|
48 |
+
mask = load_img_to_array(mask_p)
|
49 |
+
mask = mask.astype(np.uint8)
|
50 |
+
|
51 |
+
# path to the results
|
52 |
+
img_mask_p = out_dir / f"with_{Path(mask_p).name}"
|
53 |
+
|
54 |
+
# save the masked image
|
55 |
+
dpi = plt.rcParams['figure.dpi']
|
56 |
+
height, width = img.shape[:2]
|
57 |
+
plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
|
58 |
+
plt.imshow(img)
|
59 |
+
plt.axis('off')
|
60 |
+
show_mask(plt.gca(), mask, random_color=False)
|
61 |
+
plt.savefig(img_mask_p, bbox_inches='tight', pad_inches=0)
|
62 |
+
plt.close()
|