Unam_tesis_beto_finnetuning: Unam's thesis classification with BETO
This model is created from the finetuning of the pre-model for Spanish BETO, using PyTorch framework, and trained with a set of theses of the National Autonomous University of Mexico (UNAM). The model classifies a text into for five (Psicología, Derecho, Química Farmacéutico Biológica, Actuaría, Economía) possible careers at the UNAM.
Training Dataset
1000 documents (Thesis introduction, Author´s first name, Author´s last name, Thesis title, Year, Career)
Careers | Size |
---|---|
Actuaría | 200 |
Derecho | 200 |
Economía | 200 |
Psicología | 200 |
Química Farmacéutico Biológica | 200 |
Example of use
For further details on how to use unam_tesis_BETO_finnetuning you can visit the Hugging Face Transformers library, starting with the Quickstart section. The UNAM tesis model can be accessed simply as 'hackathon-pln-e/unam_tesis_BETO_finnetuning' by using the Transformers library. An example of how to download and use the model can be found next.
tokenizer = AutoTokenizer.from_pretrained('hiiamsid/BETO_es_binary_classification', use_fast=False)
model = AutoModelForSequenceClassification.from_pretrained(
'hackathon-pln-es/unam_tesis_BETO_finnetuning', num_labels=5, output_attentions=False,
output_hidden_states=False)
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
classificationResult = pipe("Análisis de las condiciones del aprendizaje desde casa en los alumnos de preescolar y primaria del municipio de Nicolás Romero")
Citation
To cite this resource in a publication please use the following:
[UNAM's Tesis with BETO finetuning classify] (https://huggingface.co/hackathon-pln-es/unam_tesis_BETO_finnetuning)
To cite this resource in a publication please use the following:
@inproceedings{SpanishNLPHackaton2022,
title={UNAM's Theses with BETO fine-tuning classify},
author={López López, Isaac Isaías; Clavel Quintero, Yisel; López Ramos, Dionis & López López, Ximena Yeraldin},
booktitle={Somos NLP Hackaton 2022},
year={2022}
}
Team members
- Isaac Isaías López López (MajorIsaiah)
- Dionis López Ramos (inoid)
- Yisel Clavel Quintero (clavel)
- Ximena Yeraldin López López (Ximyer)
- Downloads last month
- 53