File size: 4,675 Bytes
a9a1d4e 565bb89 afc3d0d a9a1d4e afc3d0d 9c32acb afc3d0d 9c32acb afc3d0d b806d88 afc3d0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
---
base_model: cognitivecomputations/fc-dolphin-2.6-mistral-7b-dpo-laser
language:
- en
library_name: transformers
tags:
- quantized
- 4-bit
- AWQ
- transformers
- pytorch
- mistral
- text-generation
- conversational
- autotrain_compatible
- endpoints_compatible
- text-generation-inference
- chatml
license: other
model_creator: cognitivecomputations
model_name: fc-dolphin-2.6-mistral-7b-dpo-laser
model_type: mistral
pipeline_tag: text-generation
inference: false
prompt_template: '<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
'
quantized_by: Suparious
---
# cognitivecomputations/fc-dolphin-2.6-mistral-7b-dpo-laser AWQ
- Model creator: [cognitivecomputations](https://huggingface.co/cognitivecomputations)
- Original model: [fc-dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/fc-dolphin-2.6-mistral-7b-dpo-laser)
<img src="https://huggingface.co/cognitivecomputations/fc-dolphin-2.6-mistral-7b-dpo-laser/resolve/main/fc-dolphin.jpg" width="600" />
by David, Fernando and Eric
## Model Summary
Sponsored by: [VAGO Solutions](https://vago-solutions.de) and [HyperSpace.Ai](https://hyperspace.computer/)
Join our Discord! https://discord.gg/cognitivecomputations
A function calling version of [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser)
It follows the implementation of laserRMT @ https://github.com/cognitivecomputations/laserRMT and the novel training technique - we partially freeze the model according to a laser-like analysis (Official Paper soon)
which effectively prevents the significant problem of language models forgetting previously acquired knowledge. This aspect is particularly crucial when attempting to teach the model specific skills, such as function calling.
We intend to be the first of a family of experimentations being carried out @ Cognitive Computations.
## How to use
### Install the necessary packages
```bash
pip install --upgrade autoawq autoawq-kernels transformers sentencepiece protobuf
```
### Example Python code
```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer
model_path = "solidrust/fc-dolphin-2.6-mistral-7b-dpo-laser-AWQ"
system_message = "You are Dolphin, a helpful AI assistant."
# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
streamer = TextStreamer(tokenizer,
skip_prompt=True,
skip_special_tokens=True)
# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""
prompt = "You're standing on the surface of the Earth. "\
"You walk one mile south, one mile west and one mile north. "\
"You end up exactly where you started. Where are you?"
tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
return_tensors='pt').input_ids.cuda()
# Generate output
generation_output = model.generate(tokens,
streamer=streamer,
max_new_tokens=512)
```
### About AWQ
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
It is supported by:
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
## Prompt template: ChatML
```plaintext
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
# Other Quants
- [dagbs/-GGUF](https://huggingface.co/dagbs/fc-dolphin-2.6-mistral-7b-dpo-laser-GGUF)
|