File size: 4,675 Bytes
a9a1d4e
565bb89
afc3d0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9a1d4e
afc3d0d
 
 
 
 
9c32acb
 
 
afc3d0d
 
9c32acb
 
 
 
 
 
 
 
 
 
 
afc3d0d
 
 
 
 
b806d88
afc3d0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
base_model: cognitivecomputations/fc-dolphin-2.6-mistral-7b-dpo-laser
language:
- en
library_name: transformers
tags:
  - quantized
  - 4-bit
  - AWQ
  - transformers
  - pytorch
  - mistral
  - text-generation
  - conversational
  - autotrain_compatible
  - endpoints_compatible
  - text-generation-inference
  - chatml
license: other
model_creator: cognitivecomputations
model_name: fc-dolphin-2.6-mistral-7b-dpo-laser
model_type: mistral
pipeline_tag: text-generation
inference: false
prompt_template: '<|im_start|>system

  {system_message}<|im_end|>

  <|im_start|>user

  {prompt}<|im_end|>

  <|im_start|>assistant

  '
quantized_by: Suparious
---
# cognitivecomputations/fc-dolphin-2.6-mistral-7b-dpo-laser AWQ

- Model creator: [cognitivecomputations](https://huggingface.co/cognitivecomputations)
- Original model: [fc-dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/fc-dolphin-2.6-mistral-7b-dpo-laser)

<img src="https://huggingface.co/cognitivecomputations/fc-dolphin-2.6-mistral-7b-dpo-laser/resolve/main/fc-dolphin.jpg" width="600" />
by David, Fernando and Eric

## Model Summary

Sponsored by: [VAGO Solutions](https://vago-solutions.de) and [HyperSpace.Ai](https://hyperspace.computer/)

Join our Discord! https://discord.gg/cognitivecomputations

A function calling version of [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser) 

It follows the implementation of laserRMT @ https://github.com/cognitivecomputations/laserRMT and the novel training technique - we partially freeze the model according to a laser-like analysis (Official Paper soon)
which effectively prevents the significant problem of language models forgetting previously acquired knowledge. This aspect is particularly crucial when attempting to teach the model specific skills, such as function calling.

We intend to be the first of a family of experimentations being carried out @ Cognitive Computations.

## How to use

### Install the necessary packages

```bash
pip install --upgrade autoawq autoawq-kernels transformers sentencepiece protobuf
```

### Example Python code

```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer

model_path = "solidrust/fc-dolphin-2.6-mistral-7b-dpo-laser-AWQ"
system_message = "You are Dolphin, a helpful AI assistant."

# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
                                          fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
                                          trust_remote_code=True)
streamer = TextStreamer(tokenizer,
                        skip_prompt=True,
                        skip_special_tokens=True)

# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""

prompt = "You're standing on the surface of the Earth. "\
        "You walk one mile south, one mile west and one mile north. "\
        "You end up exactly where you started. Where are you?"

tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
                  return_tensors='pt').input_ids.cuda()

# Generate output
generation_output = model.generate(tokens,
                                  streamer=streamer,
                                  max_new_tokens=512)

```

### About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.

It is supported by:

- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code

## Prompt template: ChatML

```plaintext
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```

# Other Quants
- [dagbs/-GGUF](https://huggingface.co/dagbs/fc-dolphin-2.6-mistral-7b-dpo-laser-GGUF)