Suparious commited on
Commit
afc3d0d
1 Parent(s): 9733276

update model card

Browse files
Files changed (1) hide show
  1. README.md +115 -3
README.md CHANGED
@@ -1,9 +1,49 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
4
  <img src="https://huggingface.co/cognitivecomputations/fc-dolphin-2.6-mistral-7b-dpo-laser/resolve/main/fc-dolphin.jpg" width="600" />
5
  by David, Fernando and Eric
6
 
 
 
7
  Sponsored by: [VAGO Solutions](https://vago-solutions.de) and [HyperSpace.Ai](https://hyperspace.computer/)
8
 
9
  Join our Discord! https://discord.gg/cognitivecomputations
@@ -15,5 +55,77 @@ which effectively prevents the significant problem of language models forgetting
15
 
16
  We intend to be the first of a family of experimentations being carried out @ Cognitive Computations.
17
 
18
- # Quants
19
- - [dagbs/-GGUF](https://huggingface.co/dagbs/fc-dolphin-2.6-mistral-7b-dpo-laser-GGUF)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ library_name: transformers
5
+ tags:
6
+ - quantized
7
+ - 4-bit
8
+ - AWQ
9
+ - transformers
10
+ - pytorch
11
+ - mistral
12
+ - text-generation
13
+ - conversational
14
+ - autotrain_compatible
15
+ - endpoints_compatible
16
+ - text-generation-inference
17
+ - chatml
18
+ license: other
19
+ model_creator: cognitivecomputations
20
+ model_name: fc-dolphin-2.6-mistral-7b-dpo-laser
21
+ model_type: mistral
22
+ pipeline_tag: text-generation
23
+ inference: false
24
+ prompt_template: '<|im_start|>system
25
+
26
+ {system_message}<|im_end|>
27
+
28
+ <|im_start|>user
29
+
30
+ {prompt}<|im_end|>
31
+
32
+ <|im_start|>assistant
33
+
34
+ '
35
+ quantized_by: Suparious
36
  ---
37
+ # cognitivecomputations/fc-dolphin-2.6-mistral-7b-dpo-laser AWQ
38
+
39
+ - Model creator: [cognitivecomputations](https://huggingface.co/cognitivecomputations)
40
+ - Original model: [fc-dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/fc-dolphin-2.6-mistral-7b-dpo-laser)
41
+
42
  <img src="https://huggingface.co/cognitivecomputations/fc-dolphin-2.6-mistral-7b-dpo-laser/resolve/main/fc-dolphin.jpg" width="600" />
43
  by David, Fernando and Eric
44
 
45
+ ## Model Summary
46
+
47
  Sponsored by: [VAGO Solutions](https://vago-solutions.de) and [HyperSpace.Ai](https://hyperspace.computer/)
48
 
49
  Join our Discord! https://discord.gg/cognitivecomputations
 
55
 
56
  We intend to be the first of a family of experimentations being carried out @ Cognitive Computations.
57
 
58
+ ## How to use
59
+
60
+ ### Install the necessary packages
61
+
62
+ ```bash
63
+ pip install --upgrade autoawq autoawq-kernels
64
+ ```
65
+
66
+ ### Example Python code
67
+
68
+ ```python
69
+ from awq import AutoAWQForCausalLM
70
+ from transformers import AutoTokenizer, TextStreamer
71
+
72
+ model_path = "solidrust/fc-dolphin-2.6-mistral-7b-dpo-laser-AWQ"
73
+ system_message = "You are Dolphin, a helpful AI assistant."
74
+
75
+ # Load model
76
+ model = AutoAWQForCausalLM.from_quantized(model_path,
77
+ fuse_layers=True)
78
+ tokenizer = AutoTokenizer.from_pretrained(model_path,
79
+ trust_remote_code=True)
80
+ streamer = TextStreamer(tokenizer,
81
+ skip_prompt=True,
82
+ skip_special_tokens=True)
83
+
84
+ # Convert prompt to tokens
85
+ prompt_template = """\
86
+ <|im_start|>system
87
+ {system_message}<|im_end|>
88
+ <|im_start|>user
89
+ {prompt}<|im_end|>
90
+ <|im_start|>assistant"""
91
+
92
+ prompt = "You're standing on the surface of the Earth. "\
93
+ "You walk one mile south, one mile west and one mile north. "\
94
+ "You end up exactly where you started. Where are you?"
95
+
96
+ tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
97
+ return_tensors='pt').input_ids.cuda()
98
+
99
+ # Generate output
100
+ generation_output = model.generate(tokens,
101
+ streamer=streamer,
102
+ max_new_tokens=512)
103
+
104
+ ```
105
+
106
+ ### About AWQ
107
+
108
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
109
+
110
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
111
+
112
+ It is supported by:
113
+
114
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
115
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
116
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
117
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
118
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
119
+
120
+ ## Prompt template: ChatML
121
+
122
+ ```plaintext
123
+ <|im_start|>system
124
+ {system_message}<|im_end|>
125
+ <|im_start|>user
126
+ {prompt}<|im_end|>
127
+ <|im_start|>assistant
128
+ ```
129
+
130
+ # Other Quants
131
+ - [dagbs/-GGUF](https://huggingface.co/dagbs/fc-dolphin-2.6-mistral-7b-dpo-laser-GGUF)