Model description
This is a Histogram-based Gradient Boosting Classification Tree model trained on HPC history jobs between 1Feb-1Aug 2022, window number 0.
Window Start: 2022-02-01 00:06:58; Window End: 2022-03-03 04:05:20; Total Jobs in Window 0: 35812.
Best parameters: {'hgbc__learning_rate': 0.1, 'hgbc__max_depth': 9, 'hgbc__max_iter': 600}
Performance on TEST
Accuracy on entire set: 0.946168166304685
Accuracy for last bin scheduling assuming bins <= 0 are incorrect: 0.9454; (936/990)
Accuracy for last bin scheduling assuming bins <= 1 are incorrect: 0.9242; (915/990)
Accuracy for last bin scheduling assuming bins <= 2 are incorrect: 0.9121; (903/990)
Accuracy for last bin scheduling assuming bins <= 3 are incorrect: 0.8878; (879/990)
Intended uses & limitations
[More Information Needed]
Training Procedure
[More Information Needed]
Hyperparameters
Click to expand
Hyperparameter | Value |
---|---|
memory | |
steps | [('scale', StandardScaler()), ('hgbc', HistGradientBoostingClassifier(max_depth=9, max_iter=600))] |
verbose | False |
scale | StandardScaler() |
hgbc | HistGradientBoostingClassifier(max_depth=9, max_iter=600) |
scale__copy | True |
scale__with_mean | True |
scale__with_std | True |
hgbc__categorical_features | |
hgbc__class_weight | |
hgbc__early_stopping | auto |
hgbc__interaction_cst | |
hgbc__l2_regularization | 0.0 |
hgbc__learning_rate | 0.1 |
hgbc__loss | log_loss |
hgbc__max_bins | 255 |
hgbc__max_depth | 9 |
hgbc__max_iter | 600 |
hgbc__max_leaf_nodes | 31 |
hgbc__min_samples_leaf | 20 |
hgbc__monotonic_cst | |
hgbc__n_iter_no_change | 10 |
hgbc__random_state | |
hgbc__scoring | loss |
hgbc__tol | 1e-07 |
hgbc__validation_fraction | 0.1 |
hgbc__verbose | 0 |
hgbc__warm_start | False |
Model Plot
Pipeline(steps=[('scale', StandardScaler()),('hgbc',HistGradientBoostingClassifier(max_depth=9, max_iter=600))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Pipeline(steps=[('scale', StandardScaler()),('hgbc',HistGradientBoostingClassifier(max_depth=9, max_iter=600))])
StandardScaler()
HistGradientBoostingClassifier(max_depth=9, max_iter=600)
Evaluation Results
Metric | Value |
---|---|
accuracy | 0.946168166304685 |
classification report | precision recall f1-score support 0 0.97 0.98 0.98 5075 1 0.74 0.57 0.64 218 2 0.70 0.59 0.64 108 3 0.67 0.55 0.60 86 4 0.89 0.92 0.90 959 accuracy 0.95 6446 macro avg 0.79 0.72 0.75 6446 weighted avg 0.94 0.95 0.94 6446 |
How to Get Started with the Model
[More Information Needed]
Model Card Authors
This model card is written by following authors:
[More Information Needed]
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
Below you can find information related to citation.
BibTeX:
[More Information Needed]
citation_bibtex
bibtex @inproceedings{...,year={2024}}
get_started_code
import pickle with open(dtc_pkl_filename, 'rb') as file: clf = pickle.load(file)
model_card_authors
Smruti Padhy Joe Stubbs
limitations
This model is ready to be used in production.
model_description
This is a Histogram-based Gradient Boosting Classification Tree model trained on HPC history jobs between 1Feb-1Aug 2022, window number0
eval_method
The model is evaluated using test split, on accuracy and F1 score with macro average.
confusion_matrix
- Downloads last month
- 0