metadata
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 271.39 +/- 12.49
name: mean_reward
verified: false
PPO Agent playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library.
Usage (with Stable-baselines3)
TODO: Add your code
Create environment
env = gym.make('LunarLander-v2')
Instantiate the agent
model = PPO('MlpPolicy', env, verbose=1)
Train the agent
model.learn(total_timesteps=int(2e5))
TODO: Define a PPO MlpPolicy architecture
We use MultiLayerPerceptron (MLPPolicy) because the input is a vector,
if we had frames as input we would use CnnPolicy
model = PPO( policy = 'MlpPolicy', env = env, n_steps = 4096, batch_size = 128, n_epochs = 8, gamma = 0.999, gae_lambda = 0.98, ent_coef = 0.01, verbose=1)
TODO: Train it for 1,000,000 timesteps
model.learn(total_timesteps=2000000)
TODO: Specify file name for model and save the model to file
model_name = "ppo-LunarLander-v2" model.save(model_name)
TODO: Evaluate the agent
Create a new environment for evaluation
eval_env = Monitor(gym.make("LunarLander-v2"))
Evaluate the model with 10 evaluation episodes and deterministic=True
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
Print the results
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...