Edit model card

SentenceTransformer based on FacebookAI/xlm-roberta-base

This is a sentence-transformers model finetuned from FacebookAI/xlm-roberta-base on the en-fr, en-fi, en-pl, en-sv, en-de, en-it, en-pt, en-no, en-nb, en-de-de, en-es, en-cs, en-nl, en-da, en-lt, en-is, en-sl, en-sv-se, en-fi-fi, en-en-gb, en-lv, en-el and en-et datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: FacebookAI/xlm-roberta-base
  • Maximum Sequence Length: 128 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Datasets:
    • en-fr
    • en-fi
    • en-pl
    • en-sv
    • en-de
    • en-it
    • en-pt
    • en-no
    • en-nb
    • en-de-de
    • en-es
    • en-cs
    • en-nl
    • en-da
    • en-lt
    • en-is
    • en-sl
    • en-sv-se
    • en-fi-fi
    • en-en-gb
    • en-lv
    • en-el
    • en-et

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("slimaneMakh/student-multilang-XLMR-14jun")
# Run inference
sentences = [
    'Financial asset investments',
    'Financne nalozbe',
    'activities',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Knowledge Distillation

Metric Value
negative_mse -18.7979

Translation

Metric Value
src2trg_accuracy 0.0026
trg2src_accuracy 0.0022
mean_accuracy 0.0024

Knowledge Distillation

Metric Value
negative_mse -19.079

Translation

Metric Value
src2trg_accuracy 0.0055
trg2src_accuracy 0.0048
mean_accuracy 0.0052

Knowledge Distillation

Metric Value
negative_mse -18.9324

Translation

Metric Value
src2trg_accuracy 0.0031
trg2src_accuracy 0.0027
mean_accuracy 0.0029

Knowledge Distillation

Metric Value
negative_mse -19.0325

Translation

Metric Value
src2trg_accuracy 0.0037
trg2src_accuracy 0.004
mean_accuracy 0.0038

Knowledge Distillation

Metric Value
negative_mse -19.2001

Translation

Metric Value
src2trg_accuracy 0.0026
trg2src_accuracy 0.0027
mean_accuracy 0.0027

Knowledge Distillation

Metric Value
negative_mse -19.0771

Translation

Metric Value
src2trg_accuracy 0.0035
trg2src_accuracy 0.0036
mean_accuracy 0.0036

Knowledge Distillation

Metric Value
negative_mse -19.0009

Translation

Metric Value
src2trg_accuracy 0.0084
trg2src_accuracy 0.0081
mean_accuracy 0.0083

Knowledge Distillation

Metric Value
negative_mse -20.6052

Translation

Metric Value
src2trg_accuracy 0.011
trg2src_accuracy 0.0123
mean_accuracy 0.0117

Knowledge Distillation

Metric Value
negative_mse -20.6013

Translation

Metric Value
src2trg_accuracy 0.0127
trg2src_accuracy 0.0127
mean_accuracy 0.0127

Knowledge Distillation

Metric Value
negative_mse -20.8682

Translation

Metric Value
src2trg_accuracy 0.0282
trg2src_accuracy 0.0282
mean_accuracy 0.0282

Knowledge Distillation

Metric Value
negative_mse -18.8438

Translation

Metric Value
src2trg_accuracy 0.0051
trg2src_accuracy 0.0047
mean_accuracy 0.0049

Knowledge Distillation

Metric Value
negative_mse -19.1286

Translation

Metric Value
src2trg_accuracy 0.0112
trg2src_accuracy 0.0145
mean_accuracy 0.0129

Knowledge Distillation

Metric Value
negative_mse -19.8483

Translation

Metric Value
src2trg_accuracy 0.007
trg2src_accuracy 0.0082
mean_accuracy 0.0076

Knowledge Distillation

Metric Value
negative_mse -19.3856

Translation

Metric Value
src2trg_accuracy 0.0116
trg2src_accuracy 0.0126
mean_accuracy 0.0121

Knowledge Distillation

Metric Value
negative_mse -20.485

Translation

Metric Value
src2trg_accuracy 0.0109
trg2src_accuracy 0.0109
mean_accuracy 0.0109

Knowledge Distillation

Metric Value
negative_mse -19.2169

Translation

Metric Value
src2trg_accuracy 0.0072
trg2src_accuracy 0.0093
mean_accuracy 0.0083

Knowledge Distillation

Metric Value
negative_mse -18.1531

Translation

Metric Value
src2trg_accuracy 0.0112
trg2src_accuracy 0.014
mean_accuracy 0.0126

Knowledge Distillation

Metric Value
negative_mse -17.6476

Translation

Metric Value
src2trg_accuracy 0.0234
trg2src_accuracy 0.0208
mean_accuracy 0.0221

Knowledge Distillation

Metric Value
negative_mse -19.282

Translation

Metric Value
src2trg_accuracy 0.018
trg2src_accuracy 0.018
mean_accuracy 0.018

Knowledge Distillation

Metric Value
negative_mse -23.5088

Translation

Metric Value
src2trg_accuracy 0.0126
trg2src_accuracy 0.0167
mean_accuracy 0.0146

Knowledge Distillation

Metric Value
negative_mse -18.0377

Translation

Metric Value
src2trg_accuracy 0.0048
trg2src_accuracy 0.0095
mean_accuracy 0.0071

Knowledge Distillation

Metric Value
negative_mse -23.5207

Translation

Metric Value
src2trg_accuracy 0.0513
trg2src_accuracy 0.0513
mean_accuracy 0.0513

Knowledge Distillation

Metric Value
negative_mse -17.5146

Translation

Metric Value
src2trg_accuracy 0.0192
trg2src_accuracy 0.0192
mean_accuracy 0.0192

Training Details

Training Datasets

en-fr

  • Dataset: en-fr
  • Size: 63,449 training samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 10.09 tokens
    • max: 30 tokens
    • min: 3 tokens
    • mean: 9.1 tokens
    • max: 24 tokens
  • Samples:
    label english non_english
    [-0.0459553524851799, 0.36456549167633057, 0.36365264654159546, 0.6452828645706177, -0.4019026756286621, ...] Net income for the period attributable to shareholders Resultat de lexercice
    [0.44971197843551636, 0.9621334075927734, -0.0879441499710083, -0.08917804807424545, 0.002839124295860529, ...] Podatek dochodowy Impots
    [0.3880807161331177, 0.19511738419532776, -0.13357722759246826, 0.25993096828460693, 0.0716109424829483, ...] AttributabletotheshareholdersofKvikabankihf aux actionnaires de la Societe
  • Loss: MSELoss

en-fi

  • Dataset: en-fi
  • Size: 18,428 training samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 9.67 tokens
    • max: 31 tokens
    • min: 3 tokens
    • mean: 7.69 tokens
    • max: 17 tokens
  • Samples:
    label english non_english
    [-0.24573877453804016, 0.5694760680198669, 0.45771917700767517, -0.13942377269268036, -0.2597014904022217, ...] Shareholders of Copenhagen Airports AS Emoyhtion osakkeenomistajille
    [0.5077632665634155, 0.8774086236953735, -0.3499397933483124, -0.6389203667640686, 0.026370976120233536, ...] Income tax benefit expense Income taxes
    [0.9414718747138977, -0.24161840975284576, 0.41289815306663513, 0.10003143548965454, -1.092337965965271, ...] Result Emoyrityksen osakkeenomistajille kuuluvasta tuloksesta laskettu
  • Loss: MSELoss

en-pl

  • Dataset: en-pl
  • Size: 45,054 training samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 10.09 tokens
    • max: 29 tokens
    • min: 4 tokens
    • mean: 12.42 tokens
    • max: 39 tokens
  • Samples:
    label english non_english
    [0.09482160955667496, 0.7886450886726379, 0.23035818338394165, 0.21230120956897736, 0.33353161811828613, ...] Changes in deferred taxes directly recognized in other comprehensive income Podatek dochodowy dotyczacy innych calkowitych dochodow
    [-0.15856720507144928, 0.6147034168243408, -0.25085723400115967, -0.5494844913482666, -0.526219367980957, ...] Diluted from continuing operations Rozwodniony zysk strata na jedna akcje
    [-0.1696387380361557, -0.23339493572711945, -0.7045446038246155, -0.3721548914909363, -0.36909934878349304, ...] CASH FLOW RESULTING FROM OPERATING ACTIVITIES Srodki pieniezne netto z dzialalnosci operacyjnej
  • Loss: MSELoss

en-sv

  • Dataset: en-sv
  • Size: 37,354 training samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 9.67 tokens
    • max: 36 tokens
    • min: 3 tokens
    • mean: 8.34 tokens
    • max: 21 tokens
  • Samples:
    label english non_english
    [-0.2742433547973633, -0.4345971345901489, -0.28529638051986694, -0.06954757869243622, -1.822569489479065, ...] grupe moderbolagets aktieagare
    [0.04750566929578781, 0.2545453608036041, 0.3464582860469818, 0.22448834776878357, -0.0583755262196064, ...] Total comprehensive income for the year attributable to owners of the parent Company Moderbolagets aktieagare
    [0.045431576669216156, 0.3078455924987793, -0.06083355098962784, -0.5454118847846985, 0.5727013349533081, ...] Repayment of obligations under lease arrangements Amortering av skuld
  • Loss: MSELoss

en-de

  • Dataset: en-de
  • Size: 45,253 training samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 9.92 tokens
    • max: 31 tokens
    • min: 3 tokens
    • mean: 9.18 tokens
    • max: 23 tokens
  • Samples:
    label english non_english
    [-0.086859792470932, 0.7745860815048218, -0.08605925738811493, 0.37508440017700195, -0.9738988876342773, ...] adjustments of investments in subsidiaries Wahrungsumrechnungsdifferenzen
    [-0.05315065383911133, 0.0072781918570399284, -0.2516656517982483, -0.4747457504272461, -1.1008282899856567, ...] LOSS FROM CONTINUING OPERATIONS Ergebnis nach Ertragsteuern
    [0.14867287874221802, 1.0406593084335327, -0.17914682626724243, -0.6161922812461853, 0.14850790798664093, ...] Taxation paid received Ertragsteueraufwand ertrag
  • Loss: MSELoss

en-it

  • Dataset: en-it
  • Size: 34,682 training samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 9.98 tokens
    • max: 26 tokens
    • min: 3 tokens
    • mean: 8.39 tokens
    • max: 20 tokens
  • Samples:
    label english non_english
    [0.5695832371711731, 0.02826128527522087, 0.1920386552810669, 0.40783414244651794, -1.2495031356811523, ...] Current financial receivables Titoli in portafoglio
    [0.662227988243103, 0.6725629568099976, 0.22833657264709473, 0.054810211062431335, -0.40215858817100525, ...] Proceeds from sale of assets Attivita destinate alla vendita
    [0.1357184797525406, 0.7814697623252869, 0.3390173614025116, -0.10204766690731049, -0.3055779039859772, ...] Profit before income tax Risultato netto
  • Loss: MSELoss

en-pt

  • Dataset: en-pt
  • Size: 7,300 training samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 9.84 tokens
    • max: 27 tokens
    • min: 3 tokens
    • mean: 6.71 tokens
    • max: 12 tokens
  • Samples:
    label english non_english
    [-0.008626206777989864, 0.6093286275863647, 0.08171450346708298, 1.162959337234497, 0.6411553025245667, ...] Interest received by the Barclays Bank Group was m Juros recebidos
    [-0.27057403326034546, 0.2500847578048706, -0.07353457063436508, 0.5000247955322266, -0.07040926814079285, ...] Other liabilities Outros passivos
    [-0.03809820115566254, 0.1842460036277771, -0.08849599212408066, -0.844947338104248, 0.7437804341316223, ...] Payment of obligations under leases Passivos de locacao
  • Loss: MSELoss

en-no

  • Dataset: en-no
  • Size: 3,602 training samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 9.04 tokens
    • max: 25 tokens
    • min: 3 tokens
    • mean: 5.4 tokens
    • max: 14 tokens
  • Samples:
    label english non_english
    [0.19592446088790894, 0.5323967337608337, 0.21345381438732147, -0.4241628348827362, -0.0008733272552490234, ...] of the parent company income
    [-0.05730602145195007, 0.16925856471061707, -0.16081246733665466, -1.6013731956481934, 0.6432715654373169, ...] Employee charges and benefits expenses Personalkostnader
    [0.053435444831848145, -0.08411762863397598, 0.7841566801071167, 0.822182834148407, -0.3946605324745178, ...] in expected credit losses net totalresultat
  • Loss: MSELoss

en-nb

  • Dataset: en-nb
  • Size: 3,446 training samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 8.39 tokens
    • max: 34 tokens
    • min: 3 tokens
    • mean: 5.83 tokens
    • max: 14 tokens
  • Samples:
    label english non_english
    [0.6152929663658142, 1.0328565835952759, -0.48867374658584595, 0.6196318864822388, -1.0412869453430176, ...] Note b Andre driftskostnader
    [-0.08955559879541397, 0.07031169533729553, -0.4530458450317383, 0.6429653763771057, -0.17220227420330048, ...] Profitloss for the period Resultat
    [-0.2092481404542923, 0.8907342553138733, -0.2213028073310852, 0.19046330451965332, 0.36781418323516846, ...] Tax on profitloss Skattekostnad
  • Loss: MSELoss

en-de-de

  • Dataset: en-de-de
  • Size: 623 training samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 8.53 tokens
    • max: 31 tokens
    • min: 5 tokens
    • mean: 9.83 tokens
    • max: 14 tokens
  • Samples:
    label english non_english
    [-0.15285512804985046, 0.24292221665382385, -0.21986141800880432, -0.12183597683906555, -0.8729998469352722, ...] Ikkekontrollerende eierinteresse davon den nicht beherrschenden Anteilen zuzurechnen
    [0.7105820178985596, 0.6940978765487671, 0.29005366563796997, 0.33401334285736084, 0.05582822486758232, ...] Total net revenue Umsatzerlose
    [-0.20316101610660553, 0.9045584797859192, -0.2203243523836136, -1.074849247932434, -0.4881342351436615, ...] Caixa e equivalentes de caixa Zahlungsmittel und Zahlungsmittelaquivalente
  • Loss: MSELoss

en-es

  • Dataset: en-es
  • Size: 28,719 training samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 9.47 tokens
    • max: 28 tokens
    • min: 3 tokens
    • mean: 9.48 tokens
    • max: 23 tokens
  • Samples:
    label english non_english
    [0.172838494181633, 0.43473777174949646, 0.3958137333393097, 0.1424863040447235, -0.8349866271018982, ...] Increase in trade receivables and other assets Clientes y otras cuentas a cobrar
    [0.5418481826782227, 0.5917099714279175, 0.1668325960636139, 0.3066450357437134, -1.260878324508667, ...] Increase in trade and other receivables and advances paid Clientes y otras cuentas a cobrar
    [-0.2715812921524048, 0.05829544737935066, -0.4542696177959442, -0.029009468853473663, -0.7529364824295044, ...] Total Comprehensive Loss for the year wholly attributable to Equity Holders of the Parent Company Atribuible a la sociedad dominante
  • Loss: MSELoss

en-cs

  • Dataset: en-cs
  • Size: 2,203 training samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 10.1 tokens
    • max: 27 tokens
    • min: 4 tokens
    • mean: 7.9 tokens
    • max: 23 tokens
  • Samples:
    label english non_english
    [0.06290890276432037, 0.5762706398963928, -0.024871770292520523, 0.22431252896785736, -0.6742631196975708, ...] Udzialy niekontrolujace Nekontrolnim podilum
    [0.39093080163002014, -0.009997962974011898, 0.24490250647068024, 0.9013416171073914, -0.796424388885498, ...] Profit for the year attributable to ordinary Shareholders Akcionarum materske spolecnosti
    [-0.23978163301944733, 0.484517902135849, -0.3151543438434601, 0.1443774700164795, -0.16455821692943573, ...] Avsetning for forpliktelser Rezervy
  • Loss: MSELoss

en-nl

  • Dataset: en-nl
  • Size: 8,101 training samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 9.39 tokens
    • max: 34 tokens
    • min: 3 tokens
    • mean: 7.01 tokens
    • max: 12 tokens
  • Samples:
    label english non_english
    [0.43313074111938477, -0.23663929104804993, -0.0008638567524030805, 0.21914006769657135, -1.1042245626449585, ...] Shareholders of FGC UES Aandeelhouders van de moedermaatschappij
    [0.5194972157478333, 0.45368078351020813, 0.5302746295928955, 0.2755521535873413, -0.3021118640899658, ...] Noncontrolling interest Belang van derden
    [0.9302910566329956, 0.7344815731048584, 0.6589862108230591, 0.1774829477071762, 0.528937578201294, ...] Debt Leningen
  • Loss: MSELoss

en-da

  • Dataset: en-da
  • Size: 4,554 training samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 8.91 tokens
    • max: 31 tokens
    • min: 4 tokens
    • mean: 7.54 tokens
    • max: 26 tokens
  • Samples:
    label english non_english
    [-0.016798147931694984, 0.7280638813972473, 0.1259734034538269, -0.07660696655511856, -0.20033679902553558, ...] Provisions current portion Hensatte forpligtelser
    [-0.07381738722324371, -0.07786396145820618, -0.21328210830688477, 0.18608279526233673, -0.3095148205757141, ...] or loss Kursreguleringer
    [-0.4245157241821289, 0.4695541262626648, 0.05997037887573242, 0.2986871004104614, 0.011750679463148117, ...] assets depreciation Af og nedskrivninger
  • Loss: MSELoss

en-lt

  • Dataset: en-lt
  • Size: 2,998 training samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 9.39 tokens
    • max: 31 tokens
    • min: 5 tokens
    • mean: 8.65 tokens
    • max: 12 tokens
  • Samples:
    label english non_english
    [0.2119722217321396, 0.5226094722747803, -0.3225395679473877, 0.6458964347839355, -0.22873802483081818, ...] NOTE Atsargos
    [0.5478602647781372, 0.3326689302921295, -0.14589856564998627, 0.5814526677131653, 0.5692975521087646, ...] Repayment of loan Paskolu grazinimas
    [0.2744126319885254, 0.5255246162414551, 0.05724802985787392, 0.25815054774284363, -0.766740620136261, ...] Attributable to the owners of the Company Bendroves akcininkams
  • Loss: MSELoss

en-is

  • Dataset: en-is
  • Size: 2,138 training samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 9.65 tokens
    • max: 29 tokens
    • min: 4 tokens
    • mean: 10.54 tokens
    • max: 15 tokens
  • Samples:
    label english non_english
    [-0.037829890847206116, 1.1669130325317383, 0.2974126636981964, 0.16161930561065674, 0.022792719304561615, ...] Tax expenses Tekjuskattur
    [0.11290981620550156, 0.3291318714618683, -0.6060066819190979, 0.029671549797058105, -0.4738736152648926, ...] Share of profit from Hyundai Glovis Ahrif hlutdeildarfelaga
    [-0.1636863499879837, -0.4239570200443268, 0.2055961787700653, -1.1946961879730225, 0.13549365103244781, ...] Changes in working capital requirements Veltufe fra rekstri
  • Loss: MSELoss

en-sl

  • Dataset: en-sl
  • Size: 834 training samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 9.04 tokens
    • max: 25 tokens
    • min: 3 tokens
    • mean: 5.48 tokens
    • max: 9 tokens
  • Samples:
    label english non_english
    [0.020984871312975883, -0.31524133682250977, 0.10546927899122238, 1.0089449882507324, -0.592142641544342, ...] Net cash flows tofrom investing activities activities
    [0.1349133551120758, -0.2043939232826233, 0.2521047592163086, -0.04384709894657135, -0.5578309893608093, ...] Net cash ows from investing activities activities
    [-0.16783905029296875, 1.331608533859253, 0.9504968523979187, 0.402763694524765, -0.8187195658683777, ...] Foreign currency translations Prevedbena rezerva
  • Loss: MSELoss

en-sv-se

  • Dataset: en-sv-se
  • Size: 847 training samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 9.93 tokens
    • max: 33 tokens
    • min: 4 tokens
    • mean: 7.15 tokens
    • max: 11 tokens
  • Samples:
    label english non_english
    [-0.14358974993228912, 0.12112939357757568, 0.152898907661438, 0.2965115010738373, -0.6465349197387695, ...] Cash flow from investing activities Kassaflode fran investeringsverksamheten
    [-0.3012215495109558, -0.6284143924713135, 0.952661395072937, 0.6150138974189758, 1.3908427953720093, ...] reporting year Likvida medel
    [0.7741854190826416, 0.9692693948745728, -0.48180654644966125, -0.3358636796474457, -1.0314745903015137, ...] Note c Personalkostnader
  • Loss: MSELoss

en-fi-fi

  • Dataset: en-fi-fi
  • Size: 874 training samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 9.97 tokens
    • max: 27 tokens
    • min: 6 tokens
    • mean: 8.69 tokens
    • max: 10 tokens
  • Samples:
    label english non_english
    [-0.0959925726056099, -0.0646059587597847, -0.5595968961715698, 0.40048298239707947, -0.0345945879817009, ...] Soci della controllante Emoyhtion osakkeenomistajille
    [0.07576075196266174, 0.13357341289520264, 0.2546372711658478, 0.0818142369389534, -0.08272691816091537, ...] ordinary shareholders of the parent company Emoyhtion osakkeenomistajille
    [-0.1580277979373932, 0.6337043642997742, 0.21239566802978516, 0.5370602011680603, -1.064493179321289, ...] Net gains losses on investments in foreign operations Muuntoerot
  • Loss: MSELoss

en-en-gb

  • Dataset: en-en-gb
  • Size: 551 training samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 8.86 tokens
    • max: 38 tokens
    • min: 5 tokens
    • mean: 6.33 tokens
    • max: 8 tokens
  • Samples:
    label english non_english
    [0.18707695603370667, 0.7752551436424255, 0.12487845122814178, 0.7609840631484985, 0.21821437776088715, ...] Shortterm and current portion of longterm debt Borrowings
    [-0.24947500228881836, 1.0999057292938232, 0.3973265290260315, 0.551521897315979, -0.20870772004127502, ...] Trade and other Trade and other payables
    [0.16158847510814667, 0.9547826647758484, 0.5619722604751587, 1.3562628030776978, -0.42042723298072815, ...] Interest rate derivatives Derivative financial instruments
  • Loss: MSELoss

en-lv

  • Dataset: en-lv
  • Size: 487 training samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 8.71 tokens
    • max: 25 tokens
    • min: 5 tokens
    • mean: 8.63 tokens
    • max: 14 tokens
  • Samples:
    label english non_english
    [0.5849851369857788, 0.12363594025373459, -0.019146278500556946, 0.223326176404953, 0.3553294241428375, ...] Noncurrent interestbearing loans Aiznemumi no kreditiestadem
    [-0.4405641555786133, 0.6129574179649353, 0.3001856207847595, 0.2243034392595291, 0.3611409366130829, ...] Loans long term Aiznemumi no kreditiestadem
    [0.4723680913448334, 0.5573369860649109, -0.02968907356262207, -0.17952217161655426, -0.6545169949531555, ...] Proceeds from dividends No meitassabiedribam sanemtas dividendes
  • Loss: MSELoss

en-el

  • Dataset: en-el
  • Size: 104 training samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 7.91 tokens
    • max: 22 tokens
    • min: 4 tokens
    • mean: 5.54 tokens
    • max: 8 tokens
  • Samples:
    label english non_english
    [-0.4922516345977783, -0.07638876140117645, 0.27244681119918823, -0.03274909406900406, -0.44587045907974243, ...] other reserves Reserves
    [0.02690565586090088, 0.5322003960609436, -0.22316685318946838, 1.4094343185424805, -1.2200299501419067, ...] Derivativesliabilities Derivative financial instruments
    [-0.4285869002342224, -1.2929456233978271, -0.05507340282201767, -0.9150614142417908, -1.67551589012146, ...] Invested unrestricted equity fund Reserves
  • Loss: MSELoss

en-et

  • Dataset: en-et
  • Size: 136 training samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 10.24 tokens
    • max: 25 tokens
    • min: 7 tokens
    • mean: 7.0 tokens
    • max: 7 tokens
  • Samples:
    label english non_english
    [-0.23401905596256256, 0.947270393371582, -0.3706150949001312, 0.32394295930862427, -0.10204663872718811, ...] Depreciation and amortisation including impairment charges Pohivara kulum
    [0.5078503489494324, 0.9610038995742798, 0.028378624469041824, 0.5917476415634155, -1.4292068481445312, ...] vii Pohivara kulum
    [-0.39173853397369385, 0.42254066467285156, -0.6972977519035339, 0.13764289021492004, 0.11351882666349411, ...] Total depreciation Pohivara kulum
  • Loss: MSELoss

Evaluation Datasets

en-fr

  • Dataset: en-fr
  • Size: 27,038 evaluation samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 8.77 tokens
    • max: 21 tokens
    • min: 3 tokens
    • mean: 8.48 tokens
    • max: 21 tokens
  • Samples:
    label english non_english
    [0.0050657871179282665, 0.7755593061447144, -0.4470928907394409, -0.18634264171123505, 0.390926718711853, ...] Revenue Ventes
    [0.0050657871179282665, 0.7755593061447144, -0.4470928907394409, -0.18634264171123505, 0.390926718711853, ...] Revenue Produits des activites ordinaires
    [-0.7187896966934204, 0.300822377204895, -0.038356583565473557, 1.0221939086914062, -0.07130642980337143, ...] Distribution costs Frais commerciaux
  • Loss: MSELoss

en-fi

  • Dataset: en-fi
  • Size: 7,849 evaluation samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 9.34 tokens
    • max: 34 tokens
    • min: 3 tokens
    • mean: 7.66 tokens
    • max: 17 tokens
  • Samples:
    label english non_english
    [-0.044488366693258286, 0.4498324394226074, 0.35706791281700134, 0.5602209568023682, -0.1801929622888565, ...] Tax on profit for the year Tuloverot
    [-0.044488366693258286, 0.4498324394226074, 0.35706791281700134, 0.5602209568023682, -0.1801929622888565, ...] Tax on profit for the year Income taxes
    [-0.10370840132236481, 0.5262670516967773, -0.1583852767944336, 0.05357339233160019, 0.7700905799865723, ...] Remeasurements of defined benefit plans Etuuspohjaisen nettovelan uudelleen maarittamisesta johtuvat erat
  • Loss: MSELoss

en-pl

  • Dataset: en-pl
  • Size: 19,308 evaluation samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 9.3 tokens
    • max: 22 tokens
    • min: 4 tokens
    • mean: 12.43 tokens
    • max: 39 tokens
  • Samples:
    label english non_english
    [0.012203109450638294, 0.6782587766647339, 0.11951778084039688, -0.30175572633743286, -0.6870222091674805, ...] Administrative expenses Ogolne koszty administracyjne
    [0.11572737991809845, 1.1026246547698975, 0.1337483674287796, 0.13492430746555328, -0.2561548352241516, ...] Other operating income Pozostale przychody
    [-0.012237715534865856, 0.7524855136871338, 0.0722682923078537, -0.1759086549282074, -0.8265506625175476, ...] Other operating expenses Pozostale koszty operacyjne
  • Loss: MSELoss

en-sv

  • Dataset: en-sv
  • Size: 15,902 evaluation samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 9.03 tokens
    • max: 24 tokens
    • min: 3 tokens
    • mean: 8.03 tokens
    • max: 21 tokens
  • Samples:
    label english non_english
    [0.0050657871179282665, 0.7755593061447144, -0.4470928907394409, -0.18634264171123505, 0.390926718711853, ...] Revenue Nettoomsattning
    [0.0050657871179282665, 0.7755593061447144, -0.4470928907394409, -0.18634264171123505, 0.390926718711853, ...] Revenue Summa rorelsens intakter
    [0.0050657871179282665, 0.7755593061447144, -0.4470928907394409, -0.18634264171123505, 0.390926718711853, ...] Revenue Summa intakter
  • Loss: MSELoss

en-de

  • Dataset: en-de
  • Size: 19,441 evaluation samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 9.14 tokens
    • max: 24 tokens
    • min: 3 tokens
    • mean: 9.0 tokens
    • max: 23 tokens
  • Samples:
    label english non_english
    [0.405586302280426, 0.545492947101593, 0.5445799231529236, 0.5528497695922852, 0.3698521554470062, ...] Financial income Finanzertrage
    [0.405586302280426, 0.545492947101593, 0.5445799231529236, 0.5528497695922852, 0.3698521554470062, ...] Financial income IIIB
    [0.10624096542596817, 0.2766471207141876, 0.6653332114219666, 0.09570542722940445, -0.5832860469818115, ...] Financial expenses Finanzaufwendungen
  • Loss: MSELoss

en-it

  • Dataset: en-it
  • Size: 15,109 evaluation samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 9.12 tokens
    • max: 22 tokens
    • min: 3 tokens
    • mean: 8.6 tokens
    • max: 20 tokens
  • Samples:
    label english non_english
    [0.0050657871179282665, 0.7755593061447144, -0.4470928907394409, -0.18634264171123505, 0.390926718711853, ...] Revenue Ricavi
    [0.11572737991809845, 1.1026246547698975, 0.1337483674287796, 0.13492430746555328, -0.2561548352241516, ...] Other operating income Altri proventi
    [-0.012237218208611012, 0.7524856925010681, 0.0722685381770134, -0.17590798437595367, -0.8265498876571655, ...] Other operating expenses Altri oneri
  • Loss: MSELoss

en-pt

  • Dataset: en-pt
  • Size: 3,206 evaluation samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 9.62 tokens
    • max: 36 tokens
    • min: 3 tokens
    • mean: 6.54 tokens
    • max: 12 tokens
  • Samples:
    label english non_english
    [0.0850653275847435, 0.5872150659561157, 0.3560439944267273, -0.4916071593761444, -0.5272688269615173, ...] Investments in intangible assets Ativos intangiveis
    [-0.29471272230148315, 0.912581205368042, -0.22577235102653503, 0.051218513399362564, -0.2710682451725006, ...] Other provisions Provisoes
    [0.03657735511660576, 0.3423381447792053, -0.249881774187088, -0.22646693885326385, 0.7550634145736694, ...] Remeasurements of defined benefit schemes Ganhos perdas atuariais
  • Loss: MSELoss

en-no

  • Dataset: en-no
  • Size: 1,541 evaluation samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 8.91 tokens
    • max: 32 tokens
    • min: 3 tokens
    • mean: 5.48 tokens
    • max: 14 tokens
  • Samples:
    label english non_english
    [0.11572737991809845, 1.1026246547698975, 0.1337483674287796, 0.13492430746555328, -0.2561548352241516, ...] Other operating income Andre driftsinntekter
    [0.6171316504478455, 0.09544796496629715, 0.3045019507408142, 1.3532874584197998, -0.5360710024833679, ...] Net profit for the year Arets resultat
    [0.31753233075141907, 0.9272720813751221, -0.13628403842449188, -0.618966817855835, -0.11626463383436203, ...] Income tax paid Betalte skatter
  • Loss: MSELoss

en-nb

  • Dataset: en-nb
  • Size: 1,496 evaluation samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 8.35 tokens
    • max: 23 tokens
    • min: 3 tokens
    • mean: 5.79 tokens
    • max: 14 tokens
  • Samples:
    label english non_english
    [0.7072435021400452, 0.33462974429130554, -0.25377699732780457, 0.554284393787384, -0.9292709231376648, ...] Operating profit EBIT Resultat etter skatt
    [0.6171316504478455, 0.09544817358255386, 0.3045021593570709, 1.3532869815826416, -0.5360713601112366, ...] Net profit for the year Resultat etter skatt
    [0.6171316504478455, 0.09544817358255386, 0.3045021593570709, 1.3532869815826416, -0.5360713601112366, ...] Net profit for the year Resultat
  • Loss: MSELoss

en-de-de

  • Dataset: en-de-de
  • Size: 284 evaluation samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 8.87 tokens
    • max: 27 tokens
    • min: 5 tokens
    • mean: 9.26 tokens
    • max: 14 tokens
  • Samples:
    label english non_english
    [0.005065362900495529, 0.7755594253540039, -0.4470923840999603, -0.1863422989845276, 0.39092710614204407, ...] Revenue Umsatzerlose
    [0.6505127549171448, 0.502105712890625, 0.05527564138174057, 0.031440261751413345, -0.10601992905139923, ...] Interest received Erhaltene Zinsen
    [0.5774980783462524, 0.4874580204486847, -0.11888153851032257, 0.025767352432012558, 0.07453231513500214, ...] Total revenue Umsatzerlose
  • Loss: MSELoss

en-es

  • Dataset: en-es
  • Size: 12,190 evaluation samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 9.24 tokens
    • max: 22 tokens
    • min: 3 tokens
    • mean: 9.77 tokens
    • max: 23 tokens
  • Samples:
    label english non_english
    [-0.011251086369156837, 0.17945028841495514, -0.23512840270996094, 0.601173996925354, 0.3077372610569, ...] Gross profit MARGEN BRUTO
    [0.11572762578725815, 1.1026241779327393, 0.13374821841716766, 0.13492360711097717, -0.2561551034450531, ...] Other operating income Ingresos accesorios y otros de gestion corriente
    [0.7072424292564392, 0.3346295654773712, -0.25377705693244934, 0.5542840361595154, -0.9292711615562439, ...] Operating profit EBIT MARGEN BRUTO
  • Loss: MSELoss

en-cs

  • Dataset: en-cs
  • Size: 894 evaluation samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 10.17 tokens
    • max: 28 tokens
    • min: 4 tokens
    • mean: 7.86 tokens
    • max: 23 tokens
  • Samples:
    label english non_english
    [0.405586302280426, 0.545492947101593, 0.5445799231529236, 0.5528497695922852, 0.3698521554470062, ...] Financial income Financni vynosy
    [0.8856601715087891, 0.7636779546737671, -0.22451487183570862, 0.9918713569641113, 0.730712890625, ...] Finance income Financni vynosy
    [0.35414567589759827, 0.484447717666626, 0.41246268153190613, 0.26654252409935, -0.46763384342193604, ...] Noncontrolling interests Nekontrolnim podilum
  • Loss: MSELoss

en-nl

  • Dataset: en-nl
  • Size: 3,429 evaluation samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 8.8 tokens
    • max: 27 tokens
    • min: 3 tokens
    • mean: 6.99 tokens
    • max: 12 tokens
  • Samples:
    label english non_english
    [0.5604397058486938, 0.9408637285232544, 0.12189843505620956, -0.34225529432296753, -0.11250410228967667, ...] Interest paid etc Betaalde rente
    [0.31753233075141907, 0.9272720813751221, -0.13628403842449188, -0.618966817855835, -0.11626463383436203, ...] Income tax paid Betaalde winstbelastingen
    [0.39916926622390747, 0.20327667891979218, 0.41986599564552307, -0.6084388494491577, -0.4903983175754547, ...] Intangible assets Immateriele vaste activa
  • Loss: MSELoss

en-da

  • Dataset: en-da
  • Size: 1,901 evaluation samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 8.79 tokens
    • max: 27 tokens
    • min: 4 tokens
    • mean: 7.42 tokens
    • max: 26 tokens
  • Samples:
    label english non_english
    [0.405586302280426, 0.545492947101593, 0.5445799231529236, 0.5528497695922852, 0.3698521554470062, ...] Financial income Finansielle indtaegter
    [0.5749809145927429, 0.25882387161254883, 0.06829871982336044, 0.3255525231361389, -0.193973109126091, ...] Movements on credit facilities Kreditinstitutter
    [-0.5068938136100769, 0.421630859375, 0.4049156904220581, -0.48719698190689087, -0.10700821876525879, ...] Share capital Aktiekapital
  • Loss: MSELoss

en-lt

  • Dataset: en-lt
  • Size: 1,377 evaluation samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 9.32 tokens
    • max: 27 tokens
    • min: 5 tokens
    • mean: 8.68 tokens
    • max: 12 tokens
  • Samples:
    label english non_english
    [-0.04448840767145157, 0.44983237981796265, 0.3570672273635864, 0.5602210760116577, -0.18019315600395203, ...] Tax on profit for the year Pelno mokescio sanaudos
    [0.053332049399614334, 0.6696042418479919, 0.218048557639122, 0.22305572032928467, -0.7841112017631531, ...] Other receivables Kitos gautinos sumos
    [-0.5280259251594543, 0.39407506585121155, -0.17667946219444275, -0.9611474871635437, -1.0850781202316284, ...] Inventories Atsargos
  • Loss: MSELoss

en-is

  • Dataset: en-is
  • Size: 966 evaluation samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 9.89 tokens
    • max: 34 tokens
    • min: 4 tokens
    • mean: 10.5 tokens
    • max: 15 tokens
  • Samples:
    label english non_english
    [-0.28052818775177, 0.5305177569389343, -0.2726171910762787, -0.6555124521255493, -1.195023775100708, ...] Property plant and equipment Rekstrarfjarmunir
    [0.5614703893661499, 0.7126756906509399, -0.7462524175643921, -0.8577789068222046, -0.2560833990573883, ...] Decrease increase in payables Vidskiptaskuldir og adrar skammtimaskuldir
    [0.6009606122970581, 1.0522949695587158, 0.024701133370399475, -0.4767942428588867, -0.27263158559799194, ...] Income tax Tekjuskattur
  • Loss: MSELoss

en-sl

  • Dataset: en-sl
  • Size: 357 evaluation samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 9.12 tokens
    • max: 23 tokens
    • min: 3 tokens
    • mean: 5.49 tokens
    • max: 9 tokens
  • Samples:
    label english non_english
    [-0.044488903135061264, 0.44983190298080444, 0.35706815123558044, 0.560221791267395, -0.18019415438175201, ...] Tax on profit for the year Davek iz dobicka
    [0.10000382363796234, 0.1258276104927063, 0.48933619260787964, 0.4827534556388855, -1.07231605052948, ...] Current asset investments Financne nalozbe
    [0.00028255581855773926, -0.16900330781936646, -0.0987740308046341, 0.19973833858966827, -0.23712165653705597, ...] Net cash outflow from investing activities activities
  • Loss: MSELoss

en-sv-se

  • Dataset: en-sv-se
  • Size: 385 evaluation samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 9.98 tokens
    • max: 27 tokens
    • min: 4 tokens
    • mean: 7.06 tokens
    • max: 11 tokens
  • Samples:
    label english non_english
    [0.5604397058486938, 0.9408637285232544, 0.12189843505620956, -0.34225529432296753, -0.11250410228967667, ...] Interest paid etc Betald ranta
    [-0.15956099331378937, -0.104736328125, 0.17104840278625488, 0.3255482017993927, -0.4631202518939972, ...] Cash flows from investing activities Kassaflode fran investeringsverksamheten
    [0.11968827247619629, 0.7799925208091736, -0.08703255653381348, -1.228922724723816, -1.6603511571884155, ...] Cash and cash equivalents Likvida medel
  • Loss: MSELoss

en-fi-fi

  • Dataset: en-fi-fi
  • Size: 389 evaluation samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 9.7 tokens
    • max: 25 tokens
    • min: 6 tokens
    • mean: 8.6 tokens
    • max: 10 tokens
  • Samples:
    label english non_english
    [-0.08681110292673111, 0.06999394297599792, 0.16943465173244476, -0.6658964157104492, -1.3333454132080078, ...] Equity shareholders Emoyhtion osakkeenomistajille
    [-0.4602399170398712, 1.3417373895645142, 0.6107428073883057, 0.45281982421875, -0.7822347283363342, ...] Exchange differences arising on translation of foreign operations Muuntoerot
    [0.20600593090057373, 0.06086999550461769, 0.1364181935787201, 0.6713289618492126, -0.8476033210754395, ...] Attributable to the shareholders Emoyhtion osakkeenomistajille
  • Loss: MSELoss

en-en-gb

  • Dataset: en-en-gb
  • Size: 239 evaluation samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 8.98 tokens
    • max: 33 tokens
    • min: 5 tokens
    • mean: 6.49 tokens
    • max: 8 tokens
  • Samples:
    label english non_english
    [0.35414567589759827, 0.484447717666626, 0.41246268153190613, 0.26654252409935, -0.46763384342193604, ...] Noncontrolling interests Noncontrolling interests
    [-0.26346728205680847, 1.010565161705017, 0.25545963644981384, -0.09261462837457657, -0.5145906805992126, ...] Trade and other payables Trade and other payables
    [0.3337377905845642, 0.28091752529144287, 0.26623502373695374, 0.8748410940170288, -0.44941988587379456, ...] Attributable to noncontrolling interest Noncontrolling interests
  • Loss: MSELoss

en-lv

  • Dataset: en-lv
  • Size: 210 evaluation samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 8.75 tokens
    • max: 21 tokens
    • min: 5 tokens
    • mean: 8.05 tokens
    • max: 14 tokens
  • Samples:
    label english non_english
    [0.3419339656829834, -0.2543298006057739, 0.34351760149002075, 0.6980054378509521, 0.699012815952301, ...] Interestbearing loans and borrowings Aiznemumi
    [0.27617645263671875, 0.6733821630477905, 0.47860750555992126, 0.4202423095703125, 0.044836655259132385, ...] Borrowings and bank overdrafts Aiznemumi
    [0.36503127217292786, -0.47215989232063293, 0.6517267227172852, 0.6172035932540894, 1.0784108638763428, ...] loans and borrowings Aiznemumi no kreditiestadem
  • Loss: MSELoss

en-el

  • Dataset: en-el
  • Size: 39 evaluation samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 7.56 tokens
    • max: 19 tokens
    • min: 4 tokens
    • mean: 5.44 tokens
    • max: 8 tokens
  • Samples:
    label english non_english
    [-0.07889065891504288, -0.6466420888900757, 0.4228314757347107, -0.11737698316574097, -0.06180833652615547, ...] Share premium account Reserves
    [0.07863229513168335, 0.6249228119850159, -0.08239512890577316, 0.9754469990730286, 0.02359396405518055, ...] Derivative liabilities note Derivative financial instruments
    [-0.1764196902513504, 0.4463600814342499, 0.06581983715295792, 0.787315845489502, -0.7786881923675537, ...] Derivatives liabilities Derivative financial instruments
  • Loss: MSELoss

en-et

  • Dataset: en-et
  • Size: 52 evaluation samples
  • Columns: label, english, and non_english
  • Approximate statistics based on the first 1000 samples:
    label english non_english
    type list string string
    details
    • size: 768 elements
    • min: 3 tokens
    • mean: 10.31 tokens
    • max: 21 tokens
    • min: 7 tokens
    • mean: 7.0 tokens
    • max: 7 tokens
  • Samples:
    label english non_english
    [0.5006873607635498, 0.9590571522712708, 0.5849384069442749, -0.725926399230957, -0.5808520317077637, ...] impairment of noncurrent assets Pohivara kulum
    [-0.12556228041648865, 0.2528606057167053, -0.2748187780380249, 0.25966036319732666, -0.31089597940444946, ...] depreciation and amortisation Pohivara kulum
    [0.458812415599823, 1.155530571937561, -0.515108585357666, 0.35893556475639343, 0.506560206413269, ...] Amortyzacja Pohivara kulum
  • Loss: MSELoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss en-es loss en-pl loss en-is loss en-sv loss en-sv-se loss en-da loss en-en-gb loss en-de loss en-pt loss en-fi loss en-sl loss en-el loss en-nb loss en-de-de loss en-cs loss en-et loss en-nl loss en-lt loss en-no loss en-it loss en-fi-fi loss en-lv loss en-fr loss en-cs_mean_accuracy en-cs_negative_mse en-da_mean_accuracy en-da_negative_mse en-de-de_mean_accuracy en-de-de_negative_mse en-de_mean_accuracy en-de_negative_mse en-el_mean_accuracy en-el_negative_mse en-en-gb_mean_accuracy en-en-gb_negative_mse en-es_mean_accuracy en-es_negative_mse en-et_mean_accuracy en-et_negative_mse en-fi-fi_mean_accuracy en-fi-fi_negative_mse en-fi_mean_accuracy en-fi_negative_mse en-fr_mean_accuracy en-fr_negative_mse en-is_mean_accuracy en-is_negative_mse en-it_mean_accuracy en-it_negative_mse en-lt_mean_accuracy en-lt_negative_mse en-lv_mean_accuracy en-lv_negative_mse en-nb_mean_accuracy en-nb_negative_mse en-nl_mean_accuracy en-nl_negative_mse en-no_mean_accuracy en-no_negative_mse en-pl_mean_accuracy en-pl_negative_mse en-pt_mean_accuracy en-pt_negative_mse en-sl_mean_accuracy en-sl_negative_mse en-sv-se_mean_accuracy en-sv-se_negative_mse en-sv_mean_accuracy en-sv_negative_mse
0.0205 100 0.7598 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.0410 200 0.5938 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.0615 300 0.405 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.0819 400 0.3145 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.1024 500 0.2891 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.1229 600 0.2762 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.1434 700 0.2693 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.1639 800 0.2655 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.1844 900 0.2645 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.2048 1000 0.2656 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.2253 1100 0.2623 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.2458 1200 0.2606 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.2663 1300 0.2674 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.2868 1400 0.2571 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.3073 1500 0.252 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.3277 1600 0.2464 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.3482 1700 0.2396 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.0205 100 0.2311 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.0410 200 0.2294 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.0615 300 0.2297 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.0819 400 0.2282 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.1024 500 0.2283 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.1229 600 0.2251 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.1434 700 0.2259 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.1639 800 0.224 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.1844 900 0.2213 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.2048 1000 0.2202 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.2253 1100 0.219 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.2458 1200 0.2162 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.2663 1300 0.213 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.2868 1400 0.2097 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.3073 1500 0.2069 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.3277 1600 0.206 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.3482 1700 0.2017 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.3687 1800 0.1982 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.3892 1900 0.1985 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.4097 2000 0.1953 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.4302 2100 0.1923 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.4506 2200 0.1912 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.4711 2300 0.1867 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.4916 2400 0.1876 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.5121 2500 0.1865 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.5326 2600 0.1816 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.5531 2700 0.1786 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.5735 2800 0.1786 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.5940 2900 0.1775 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.6145 3000 0.175 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.6350 3100 0.1735 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.6555 3200 0.1731 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.6760 3300 0.1717 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.6964 3400 0.1703 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.7169 3500 0.17 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.7374 3600 0.1668 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.7579 3700 0.1648 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.7784 3800 0.1664 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.7989 3900 0.1638 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.8193 4000 0.1616 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.8398 4100 0.1631 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.8603 4200 0.1614 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.8808 4300 0.1592 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.9013 4400 0.1597 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.9218 4500 0.1605 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.9422 4600 0.1593 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.9627 4700 0.1573 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.9832 4800 0.1608 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.0037 4900 0.1559 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.0242 5000 0.1567 0.1498 0.1470 0.1566 0.1527 0.1467 0.1618 0.1750 0.1491 0.1507 0.1475 0.1495 0.2114 0.1634 0.1609 0.1529 0.1600 0.1575 0.1526 0.1587 0.1497 0.1438 0.1393 0.1466 0.0112 -20.2568 0.0100 -21.6889 0.0246 -21.0408 0.0022 -19.8428 0.0513 -25.8657 0.0146 -25.2005 0.0048 -19.5834 0.0192 -20.9676 0.0180 -19.3767 0.0046 -19.5729 0.0019 -19.3683 0.0083 -20.4514 0.0031 -19.7759 0.0091 -20.1992 0.0095 -18.4323 0.0117 -21.5480 0.0063 -20.7031 0.0097 -21.0662 0.0023 -19.3807 0.0069 -19.5748 0.0112 -19.9180 0.0169 -18.6913 0.0031 -20.0760
1.0447 5100 0.1554 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.0651 5200 0.1558 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.0856 5300 0.1542 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.1061 5400 0.1533 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.1266 5500 0.1538 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.1471 5600 0.1527 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.1676 5700 0.1535 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.1880 5800 0.1539 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.2085 5900 0.1529 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.2290 6000 0.1546 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.2495 6100 0.1523 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.2700 6200 0.1484 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.2905 6300 0.1509 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.3109 6400 0.1496 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.3314 6500 0.1505 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.3519 6600 0.148 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.3724 6700 0.1477 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.3929 6800 0.1482 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.4134 6900 0.1473 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.4338 7000 0.1479 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.4543 7100 0.1476 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.4748 7200 0.1449 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.4953 7300 0.1469 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.5158 7400 0.1486 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.5363 7500 0.1457 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.5567 7600 0.1448 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.5772 7700 0.1449 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.5977 7800 0.1433 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.6182 7900 0.1433 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.6387 8000 0.1433 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.6592 8100 0.1432 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.6796 8200 0.1434 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.7001 8300 0.1423 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.7206 8400 0.1428 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.7411 8500 0.1412 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.7616 8600 0.1401 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.7821 8700 0.142 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.8025 8800 0.141 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.8230 8900 0.1397 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.8435 9000 0.1404 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.8640 9100 0.1401 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.8845 9200 0.1395 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.9050 9300 0.1391 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.9254 9400 0.1411 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.9459 9500 0.1394 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.9664 9600 0.1386 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.9869 9700 0.1415 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.0074 9800 0.1388 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.0279 9900 0.1402 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.0483 10000 0.1393 0.1328 0.1306 0.1365 0.1342 0.1282 0.1368 0.1601 0.1335 0.1335 0.1318 0.1305 0.1868 0.1486 0.1445 0.1349 0.1292 0.1395 0.1348 0.1462 0.1330 0.1301 0.1219 0.1304 0.0117 -19.4912 0.0121 -19.7982 0.0282 -20.8897 0.0025 -19.6494 0.0513 -24.6742 0.0167 -25.4686 0.0045 -19.1742 0.0192 -17.9511 0.0193 -19.3175 0.0050 -19.3365 0.0024 -19.0925 0.0083 -19.6830 0.0033 -19.4012 0.0109 -19.7036 0.0119 -18.3941 0.0107 -21.7453 0.0063 -20.2261 0.0114 -21.4993 0.0028 -19.0938 0.0073 -19.3771 0.0112 -18.8671 0.0195 -17.8846 0.0037 -19.4199
2.0688 10100 0.1382 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.0893 10200 0.1368 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.1098 10300 0.1378 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.1303 10400 0.137 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.1508 10500 0.1369 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.1712 10600 0.1369 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.1917 10700 0.1382 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.2122 10800 0.1372 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.2327 10900 0.1369 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.2532 11000 0.1358 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.2737 11100 0.1343 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.2941 11200 0.1372 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.3146 11300 0.1354 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.3351 11400 0.1364 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.3556 11500 0.135 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.3761 11600 0.1349 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.3966 11700 0.1353 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.4170 11800 0.1353 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.4375 11900 0.1354 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.4580 12000 0.1357 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.4785 12100 0.1328 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.4990 12200 0.1355 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.5195 12300 0.1356 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.5399 12400 0.1349 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.5604 12500 0.1332 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.5809 12600 0.1345 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.6014 12700 0.1327 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.6219 12800 0.1326 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.6424 12900 0.1332 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.6628 13000 0.1332 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.6833 13100 0.1334 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.7038 13200 0.1328 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.7243 13300 0.1334 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.7448 13400 0.1323 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.7653 13500 0.132 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.7857 13600 0.1318 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.8062 13700 0.1324 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.8267 13800 0.1323 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.8472 13900 0.1313 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.8677 14000 0.1318 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.8882 14100 0.1311 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.9086 14200 0.1312 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.9291 14300 0.1336 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.9496 14400 0.1312 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.9701 14500 0.1312 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.9906 14600 0.1334 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.0111 14700 0.131 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.0315 14800 0.1316 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.0520 14900 0.1312 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.0725 15000 0.1304 0.1256 0.1236 0.1278 0.1269 0.1225 0.1291 0.1491 0.1258 0.1254 0.1250 0.1222 0.1761 0.1366 0.1376 0.1273 0.1216 0.1316 0.1280 0.1349 0.1257 0.1253 0.1152 0.1233 0.0123 -19.1985 0.0124 -19.4425 0.0282 -20.7684 0.0025 -19.2806 0.0513 -24.1800 0.0146 -24.4860 0.0044 -18.9131 0.0192 -17.5769 0.0180 -19.5151 0.0049 -19.1971 0.0025 -18.8663 0.0083 -19.2975 0.0034 -19.1577 0.0102 -19.5784 0.0095 -18.1528 0.0117 -20.5703 0.0076 -19.9089 0.0114 -20.4863 0.0027 -18.9161 0.0083 -19.0866 0.0126 -18.3424 0.0208 -17.8123 0.0039 -19.1637
3.0930 15100 0.1304 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.1135 15200 0.1302 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.1340 15300 0.1296 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.1544 15400 0.1307 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.1749 15500 0.1308 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.1954 15600 0.1309 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.2159 15700 0.1312 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.2364 15800 0.1299 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.2569 15900 0.1303 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.2773 16000 0.1288 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.2978 16100 0.131 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.3183 16200 0.1296 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.3388 16300 0.1308 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.3593 16400 0.1277 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.3798 16500 0.1309 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.4002 16600 0.1282 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.4207 16700 0.1298 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.4412 16800 0.1307 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.4617 16900 0.1293 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.4822 17000 0.1282 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.5027 17100 0.1307 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.5231 17200 0.1302 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.5436 17300 0.1305 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.5641 17400 0.129 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.5846 17500 0.1292 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.6051 17600 0.1286 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.6256 17700 0.1282 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.6460 17800 0.1291 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.6665 17900 0.128 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.6870 18000 0.129 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.7075 18100 0.1289 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.7280 18200 0.1289 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.7485 18300 0.1268 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.7689 18400 0.128 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.7894 18500 0.128 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.8099 18600 0.1284 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.8304 18700 0.1278 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.8509 18800 0.1276 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.8714 18900 0.1279 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.8918 19000 0.1274 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.9123 19100 0.1277 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.9328 19200 0.1293 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.9533 19300 0.1277 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.9738 19400 0.1281 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.9943 19500 0.1294 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.0147 19600 0.1275 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.0352 19700 0.1289 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.0557 19800 0.1277 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.0762 19900 0.1269 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.0967 20000 0.1287 0.1223 0.1207 0.1242 0.1232 0.1192 0.1258 0.1411 0.1225 0.1219 0.1214 0.1184 0.1690 0.1335 0.1345 0.1239 0.1186 0.1281 0.1294 0.1321 0.1223 0.1211 0.1119 0.1200 0.0129 -19.1286 0.0121 -19.3856 0.0282 -20.8682 0.0027 -19.2001 0.0513 -23.5207 0.0146 -23.5088 0.0049 -18.8438 0.0192 -17.5146 0.0180 -19.2820 0.0052 -19.0790 0.0024 -18.7979 0.0083 -19.2169 0.0036 -19.0771 0.0109 -20.4850 0.0071 -18.0377 0.0127 -20.6013 0.0076 -19.8483 0.0117 -20.6052 0.0029 -18.9324 0.0083 -19.0009 0.0126 -18.1531 0.0221 -17.6476 0.0038 -19.0325
4.1172 20100 0.1262 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.1376 20200 0.1277 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.1581 20300 0.1276 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.1786 20400 0.1274 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.1991 20500 0.1278 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.2196 20600 0.1282 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.2401 20700 0.1272 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.2605 20800 0.1284 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.2810 20900 0.1263 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.3015 21000 0.1283 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.3220 21100 0.128 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.3425 21200 0.1273 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.3630 21300 0.1256 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.3834 21400 0.1274 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.4039 21500 0.1264 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.4244 21600 0.1276 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.4449 21700 0.1281 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.4654 21800 0.1261 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.4859 21900 0.1269 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.5063 22000 0.1292 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.5268 22100 0.1271 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.5473 22200 0.1272 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.5678 22300 0.1261 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.5883 22400 0.1262 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.6088 22500 0.1266 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.6293 22600 0.1256 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.6497 22700 0.1272 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.6702 22800 0.126 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.6907 22900 0.1268 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.7112 23000 0.1277 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.7317 23100 0.1263 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.7522 23200 0.1254 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.7726 23300 0.1267 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.7931 23400 0.1263 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.8136 23500 0.1258 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.8341 23600 0.1266 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.8546 23700 0.1261 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.8751 23800 0.1254 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.8955 23900 0.126 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.9160 24000 0.1272 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.9365 24100 0.1267 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.9570 24200 0.1266 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.9775 24300 0.1263 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.9980 24400 0.1279 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Framework Versions

  • Python: 3.12.3
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.3.1+cu121
  • Accelerate: 0.31.0
  • Datasets: 2.19.2
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MSELoss

@inproceedings{reimers-2020-multilingual-sentence-bert,
    title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2020",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2004.09813",
}
Downloads last month
6
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for slimaneMakh/student-multilang-XLMR-14jun

Finetuned
(2589)
this model

Evaluation results