silpakanneganti
commited on
Commit
•
0ef96fe
1
Parent(s):
76350ab
update model card README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,13 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
|
|
|
|
|
|
|
|
|
|
5 |
model-index:
|
6 |
- name: roberta-ivrmenu-entity
|
7 |
results: []
|
@@ -13,6 +19,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
13 |
# roberta-ivrmenu-entity
|
14 |
|
15 |
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
## Model description
|
18 |
|
@@ -41,11 +53,23 @@ The following hyperparameters were used during training:
|
|
41 |
|
42 |
### Training results
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
|
46 |
### Framework versions
|
47 |
|
48 |
-
- Transformers 4.
|
49 |
- Pytorch 2.0.1+cu117
|
50 |
- Datasets 2.12.0
|
51 |
- Tokenizers 0.12.1
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
base_model: roberta-large
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
model-index:
|
12 |
- name: roberta-ivrmenu-entity
|
13 |
results: []
|
|
|
19 |
# roberta-ivrmenu-entity
|
20 |
|
21 |
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: nan
|
24 |
+
- Precision: 0.8282
|
25 |
+
- Recall: 0.8911
|
26 |
+
- F1: 0.8585
|
27 |
+
- Accuracy: 0.9345
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 1.0 | 2 | nan | 0.9036 | 0.4950 | 0.6397 | 0.6503 |
|
59 |
+
| No log | 2.0 | 4 | nan | 0.5952 | 0.5776 | 0.5863 | 0.7387 |
|
60 |
+
| No log | 3.0 | 6 | nan | 0.7124 | 0.7030 | 0.7076 | 0.8232 |
|
61 |
+
| No log | 4.0 | 8 | nan | 0.6879 | 0.7492 | 0.7172 | 0.8402 |
|
62 |
+
| No log | 5.0 | 10 | nan | 0.7333 | 0.7987 | 0.7646 | 0.8880 |
|
63 |
+
| No log | 6.0 | 12 | nan | 0.7462 | 0.8152 | 0.7792 | 0.9044 |
|
64 |
+
| No log | 7.0 | 14 | nan | 0.7761 | 0.8350 | 0.8045 | 0.9142 |
|
65 |
+
| No log | 8.0 | 16 | nan | 0.8145 | 0.8548 | 0.8341 | 0.9247 |
|
66 |
+
| No log | 9.0 | 18 | nan | 0.8185 | 0.8779 | 0.8471 | 0.9306 |
|
67 |
+
| No log | 10.0 | 20 | nan | 0.8282 | 0.8911 | 0.8585 | 0.9345 |
|
68 |
|
69 |
|
70 |
### Framework versions
|
71 |
|
72 |
+
- Transformers 4.31.0
|
73 |
- Pytorch 2.0.1+cu117
|
74 |
- Datasets 2.12.0
|
75 |
- Tokenizers 0.12.1
|