Edit model card

roberta-ivrmenu-entity

This model is a fine-tuned version of roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Precision: 0.8282
  • Recall: 0.8911
  • F1: 0.8585
  • Accuracy: 0.9345

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 2 nan 0.9036 0.4950 0.6397 0.6503
No log 2.0 4 nan 0.5952 0.5776 0.5863 0.7387
No log 3.0 6 nan 0.7124 0.7030 0.7076 0.8232
No log 4.0 8 nan 0.6879 0.7492 0.7172 0.8402
No log 5.0 10 nan 0.7333 0.7987 0.7646 0.8880
No log 6.0 12 nan 0.7462 0.8152 0.7792 0.9044
No log 7.0 14 nan 0.7761 0.8350 0.8045 0.9142
No log 8.0 16 nan 0.8145 0.8548 0.8341 0.9247
No log 9.0 18 nan 0.8185 0.8779 0.8471 0.9306
No log 10.0 20 nan 0.8282 0.8911 0.8585 0.9345

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.12.1
Downloads last month
33
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for silpakanneganti/roberta-ivrmenu-entity

Finetuned
(273)
this model