metadata
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-regression
model_format: pickle
model_file: lda_openai_clip_model.pkl
widget:
- structuredData:
x0:
- 0
x1:
- 0
x10:
- 0
x100:
- 0
x101:
- 0
x102:
- 0
x103:
- 0
x104:
- 0
x105:
- 0
x106:
- 0
x107:
- 0
x108:
- 0
x109:
- 0
x11:
- 0
x110:
- 0
x111:
- 0
x112:
- 0
x113:
- 0
x114:
- 0
x115:
- 0
x116:
- 0
x117:
- 0
x118:
- 0
x119:
- 0
x12:
- 0
x120:
- 0
x121:
- 0
x122:
- 0
x123:
- 0
x124:
- 0
x125:
- 0
x126:
- 0
x127:
- 0
x128:
- 0
x129:
- 0
x13:
- 0
x130:
- 0
x131:
- 0
x132:
- 0
x133:
- 0
x134:
- 0
x135:
- 0
x136:
- 0
x137:
- 0
x138:
- 0
x139:
- 0
x14:
- 0
x140:
- 0
x141:
- 0
x142:
- 0
x143:
- 0
x144:
- 0
x145:
- 0
x146:
- 0
x147:
- 0
x148:
- 0
x149:
- 0
x15:
- 0
x150:
- 0
x151:
- 0
x152:
- 0
x153:
- 0
x154:
- 0
x155:
- 0
x156:
- 0
x157:
- 0
x158:
- 0
x159:
- 0
x16:
- 0
x160:
- 0
x161:
- 0
x162:
- 0
x163:
- 0
x164:
- 0
x165:
- 0
x166:
- 0
x167:
- 0
x168:
- 0
x169:
- 0
x17:
- 0
x170:
- 0
x171:
- 0
x172:
- 0
x173:
- 0
x174:
- 0
x175:
- 0
x176:
- 0
x177:
- 0
x178:
- 0
x179:
- 0
x18:
- 0
x180:
- 0
x181:
- 0
x182:
- 0
x183:
- 0
x184:
- 0
x185:
- 0
x186:
- 0
x187:
- 0
x188:
- 0
x189:
- 0
x19:
- 0
x190:
- 0
x191:
- 0
x192:
- 0
x193:
- 0
x194:
- 0
x195:
- 0
x196:
- 0
x197:
- 0
x198:
- 0
x199:
- 0
x2:
- 0
x20:
- 0
x200:
- 0
x201:
- 0
x202:
- 0
x203:
- 0
x204:
- 0
x205:
- 0
x206:
- 0
x207:
- 0
x208:
- 0
x209:
- 0
x21:
- 0
x210:
- 0
x211:
- 0
x212:
- 0
x213:
- 0
x214:
- 0
x215:
- 0
x216:
- 0
x217:
- 0
x218:
- 0
x219:
- 0
x22:
- 0
x220:
- 0
x221:
- 0
x222:
- 0
x223:
- 0
x224:
- 0
x225:
- 0
x226:
- 0
x227:
- 0
x228:
- 0
x229:
- 0
x23:
- 0
x230:
- 0
x231:
- 0
x232:
- 0
x233:
- 0
x234:
- 0
x235:
- 0
x236:
- 0
x237:
- 0
x238:
- 0
x239:
- 0
x24:
- 0
x240:
- 0
x241:
- 0
x242:
- 0
x243:
- 0
x244:
- 0
x245:
- 0
x246:
- 0
x247:
- 0
x248:
- 0
x249:
- 0
x25:
- 0
x250:
- 0
x251:
- 0
x252:
- 0
x253:
- 0
x254:
- 0
x255:
- 0
x256:
- 0
x257:
- 0
x258:
- 0
x259:
- 0
x26:
- 0
x260:
- 0
x261:
- 0
x262:
- 0
x263:
- 0
x264:
- 0
x265:
- 0
x266:
- 0
x267:
- 0
x268:
- 0
x269:
- 0
x27:
- 0
x270:
- 0
x271:
- 0
x272:
- 0
x273:
- 0
x274:
- 0
x275:
- 0
x276:
- 0
x277:
- 0
x278:
- 0
x279:
- 0
x28:
- 0
x280:
- 0
x281:
- 0
x282:
- 0
x283:
- 0
x284:
- 0
x285:
- 0
x286:
- 0
x287:
- 0
x288:
- 0
x289:
- 0
x29:
- 0
x290:
- 0
x291:
- 0
x292:
- 0
x293:
- 0
x294:
- 0
x295:
- 0
x296:
- 0
x297:
- 0
x298:
- 0
x299:
- 0
x3:
- 0
x30:
- 0
x300:
- 0
x301:
- 0
x302:
- 0
x303:
- 0
x304:
- 0
x305:
- 0
x306:
- 0
x307:
- 0
x308:
- 0
x309:
- 0
x31:
- 0
x310:
- 0
x311:
- 0
x312:
- 0
x313:
- 0
x314:
- 0
x315:
- 0
x316:
- 0
x317:
- 0
x318:
- 0
x319:
- 0
x32:
- 0
x320:
- 0
x321:
- 0
x322:
- 0
x323:
- 0
x324:
- 0
x325:
- 0
x326:
- 0
x327:
- 0
x328:
- 0
x329:
- 0
x33:
- 0
x330:
- 0
x331:
- 0
x332:
- 0
x333:
- 0
x334:
- 0
x335:
- 0
x336:
- 0
x337:
- 0
x338:
- 0
x339:
- 0
x34:
- 0
x340:
- 0
x341:
- 0
x342:
- 0
x343:
- 0
x344:
- 0
x345:
- 0
x346:
- 0
x347:
- 0
x348:
- 0
x349:
- 0
x35:
- 0
x350:
- 0
x351:
- 0
x352:
- 0
x353:
- 0
x354:
- 0
x355:
- 0
x356:
- 0
x357:
- 0
x358:
- 0
x359:
- 0
x36:
- 0
x360:
- 0
x361:
- 0
x362:
- 0
x363:
- 0
x364:
- 0
x365:
- 0
x366:
- 0
x367:
- 0
x368:
- 0
x369:
- 0
x37:
- 0
x370:
- 0
x371:
- 0
x372:
- 0
x373:
- 0
x374:
- 0
x375:
- 0
x376:
- 0
x377:
- 0
x378:
- 0
x379:
- 0
x38:
- 0
x380:
- 0
x381:
- 0
x382:
- 0
x383:
- 0
x384:
- 0
x385:
- 0
x386:
- 0
x387:
- 0
x388:
- 0
x389:
- 0
x39:
- 0
x390:
- 0
x391:
- 0
x392:
- 0
x393:
- 0
x394:
- 0
x395:
- 0
x396:
- 0
x397:
- 0
x398:
- 0
x399:
- 0
x4:
- 0
x40:
- 0
x400:
- 0
x401:
- 0
x402:
- 0
x403:
- 0
x404:
- 0
x405:
- 0
x406:
- 0
x407:
- 0
x408:
- 0
x409:
- 0
x41:
- 0
x410:
- 0
x411:
- 0
x412:
- 0
x413:
- 0
x414:
- 0
x415:
- 0
x416:
- 0
x417:
- 0
x418:
- 0
x419:
- 0
x42:
- 0
x420:
- 0
x421:
- 0
x422:
- 0
x423:
- 0
x424:
- 0
x425:
- 0
x426:
- 0
x427:
- 0
x428:
- 0
x429:
- 0
x43:
- 0
x430:
- 0
x431:
- 0
x432:
- 0
x433:
- 0
x434:
- 0
x435:
- 0
x436:
- 0
x437:
- 0
x438:
- 0
x439:
- 0
x44:
- 0
x440:
- 0
x441:
- 0
x442:
- 0
x443:
- 0
x444:
- 0
x445:
- 0
x446:
- 0
x447:
- 0
x448:
- 0
x449:
- 0
x45:
- 0
x450:
- 0
x451:
- 0
x452:
- 0
x453:
- 0
x454:
- 0
x455:
- 0
x456:
- 0
x457:
- 0
x458:
- 0
x459:
- 0
x46:
- 0
x460:
- 0
x461:
- 0
x462:
- 0
x463:
- 0
x464:
- 0
x465:
- 0
x466:
- 0
x467:
- 0
x468:
- 0
x469:
- 0
x47:
- 0
x470:
- 0
x471:
- 0
x472:
- 0
x473:
- 0
x474:
- 0
x475:
- 0
x476:
- 0
x477:
- 0
x478:
- 0
x479:
- 0
x48:
- 0
x480:
- 0
x481:
- 0
x482:
- 0
x483:
- 0
x484:
- 0
x485:
- 0
x486:
- 0
x487:
- 0
x488:
- 0
x489:
- 0
x49:
- 0
x490:
- 0
x491:
- 0
x492:
- 0
x493:
- 0
x494:
- 0
x495:
- 0
x496:
- 0
x497:
- 0
x498:
- 0
x499:
- 0
x5:
- 0
x50:
- 0
x500:
- 0
x501:
- 0
x502:
- 0
x503:
- 0
x504:
- 0
x505:
- 0
x506:
- 0
x507:
- 0
x508:
- 0
x509:
- 0
x51:
- 0
x510:
- 0
x511:
- 0
x512:
- 0
x513:
- 0
x514:
- 0
x515:
- 0
x516:
- 0
x517:
- 0
x518:
- 0
x519:
- 0
x52:
- 0
x520:
- 0
x521:
- 0
x522:
- 0
x523:
- 0
x524:
- 0
x525:
- 0
x526:
- 0
x527:
- 0
x528:
- 0
x529:
- 0
x53:
- 0
x530:
- 0
x531:
- 0
x532:
- 0
x533:
- 0
x534:
- 0
x535:
- 0
x536:
- 0
x537:
- 0
x538:
- 0
x539:
- 0
x54:
- 0
x540:
- 0
x541:
- 0
x542:
- 0
x543:
- 0
x544:
- 0
x545:
- 0
x546:
- 0
x547:
- 0
x548:
- 0
x549:
- 0
x55:
- 0
x550:
- 0
x551:
- 0
x552:
- 0
x553:
- 0
x554:
- 0
x555:
- 0
x556:
- 0
x557:
- 0
x558:
- 0
x559:
- 0
x56:
- 0
x560:
- 0
x561:
- 0
x562:
- 0
x563:
- 0
x564:
- 0
x565:
- 0
x566:
- 0
x567:
- 0
x568:
- 0
x569:
- 0
x57:
- 0
x570:
- 0
x571:
- 0
x572:
- 0
x573:
- 0
x574:
- 0
x575:
- 0
x576:
- 0
x577:
- 0
x578:
- 0
x579:
- 0
x58:
- 0
x580:
- 0
x581:
- 0
x582:
- 0
x583:
- 0
x584:
- 0
x585:
- 0
x586:
- 0
x587:
- 0
x588:
- 0
x589:
- 0
x59:
- 0
x590:
- 0
x591:
- 0
x592:
- 0
x593:
- 0
x594:
- 0
x595:
- 0
x596:
- 0
x597:
- 0
x598:
- 0
x599:
- 0
x6:
- 0
x60:
- 0
x600:
- 0
x601:
- 0
x602:
- 0
x603:
- 0
x604:
- 0
x605:
- 0
x606:
- 0
x607:
- 0
x608:
- 0
x609:
- 0
x61:
- 0
x610:
- 0
x611:
- 0
x612:
- 0
x613:
- 0
x614:
- 0
x615:
- 0
x616:
- 0
x617:
- 0
x618:
- 0
x619:
- 0
x62:
- 0
x620:
- 0
x621:
- 0
x622:
- 0
x623:
- 0
x624:
- 0
x625:
- 0
x626:
- 0
x627:
- 0
x628:
- 0
x629:
- 0
x63:
- 0
x630:
- 0
x631:
- 0
x632:
- 0
x633:
- 0
x634:
- 0
x635:
- 0
x636:
- 0
x637:
- 0
x638:
- 0
x639:
- 0
x64:
- 0
x640:
- 0
x641:
- 0
x642:
- 0
x643:
- 0
x644:
- 0
x645:
- 0
x646:
- 0
x647:
- 0
x648:
- 0
x649:
- 0
x65:
- 0
x650:
- 0
x651:
- 0
x652:
- 0
x653:
- 0
x654:
- 0
x655:
- 0
x656:
- 0
x657:
- 0
x658:
- 0
x659:
- 0
x66:
- 0
x660:
- 0
x661:
- 0
x662:
- 0
x663:
- 0
x664:
- 0
x665:
- 0
x666:
- 0
x667:
- 0
x668:
- 0
x669:
- 0
x67:
- 0
x670:
- 0
x671:
- 0
x672:
- 0
x673:
- 0
x674:
- 0
x675:
- 0
x676:
- 0
x677:
- 0
x678:
- 0
x679:
- 0
x68:
- 0
x680:
- 0
x681:
- 0
x682:
- 0
x683:
- 0
x684:
- 0
x685:
- 0
x686:
- 0
x687:
- 0
x688:
- 0
x689:
- 0
x69:
- 0
x690:
- 0
x691:
- 0
x692:
- 0
x693:
- 0
x694:
- 0
x695:
- 0
x696:
- 0
x697:
- 0
x698:
- 0
x699:
- 0
x7:
- 0
x70:
- 0
x700:
- 0
x701:
- 0
x702:
- 0
x703:
- 0
x704:
- 0
x705:
- 0
x706:
- 0
x707:
- 0
x708:
- 0
x709:
- 0
x71:
- 0
x710:
- 0
x711:
- 0
x712:
- 0
x713:
- 0
x714:
- 0
x715:
- 0
x716:
- 0
x717:
- 0
x718:
- 0
x719:
- 0
x72:
- 0
x720:
- 0
x721:
- 0
x722:
- 0
x723:
- 0
x724:
- 0
x725:
- 0
x726:
- 0
x727:
- 0
x728:
- 0
x729:
- 0
x73:
- 0
x730:
- 0
x731:
- 0
x732:
- 0
x733:
- 0
x734:
- 0
x735:
- 0
x736:
- 0
x737:
- 0
x738:
- 0
x739:
- 0
x74:
- 0
x740:
- 0
x741:
- 0
x742:
- 0
x743:
- 0
x744:
- 0
x745:
- 0
x746:
- 0
x747:
- 0
x748:
- 0
x749:
- 0
x75:
- 0
x750:
- 0
x751:
- 0
x752:
- 0
x753:
- 0
x754:
- 0
x755:
- 0
x756:
- 0
x757:
- 0
x758:
- 0
x759:
- 0
x76:
- 0
x760:
- 0
x761:
- 0
x762:
- 0
x763:
- 0
x764:
- 0
x765:
- 0
x766:
- 0
x767:
- 0
x77:
- 0
x78:
- 0
x79:
- 0
x8:
- 0
x80:
- 0
x81:
- 0
x82:
- 0
x83:
- 0
x84:
- 0
x85:
- 0
x86:
- 0
x87:
- 0
x88:
- 0
x89:
- 0
x9:
- 0
x90:
- 0
x91:
- 0
x92:
- 0
x93:
- 0
x94:
- 0
x95:
- 0
x96:
- 0
x97:
- 0
x98:
- 0
x99:
- 0
Model description
一个简易说的人脸识别baseline,使用openai/clip-vit-base-patch16 + LDA的策略
Intended uses & limitations
整体需要配合github对应的代码使用
Training Procedure
[More Information Needed]
Hyperparameters
Click to expand
Hyperparameter | Value |
---|---|
covariance_estimator | |
n_components | 512 |
priors | |
shrinkage | |
solver | svd |
store_covariance | False |
tol | 0.0001 |
Model Plot
LinearDiscriminantAnalysis(n_components=512)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
LinearDiscriminantAnalysis(n_components=512)
Evaluation Results
[More Information Needed]
How to Get Started with the Model
[More Information Needed]
Model Card Authors
Cheng Li(https://github.com/LC1332)
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
@inproceedings{wang2018devil, title={The devil of face recognition is in the noise}, author={Wang, Fei and Chen, Liren and Li, Cheng and Huang, Shiyao and Chen, Yanjie and Qian, Chen and Loy, Chen Change}, booktitle={Proceedings of the European Conference on Computer Vision (ECCV)}, pages={765--780}, year={2018} }