|
--- |
|
license: apache-2.0 |
|
base_model: ntu-spml/distilhubert |
|
tags: |
|
- audio-classification |
|
- generated_from_trainer |
|
datasets: |
|
- marsyas/gtzan |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: distilhubert-finetuned-gtzan |
|
results: |
|
- task: |
|
name: Audio Classification |
|
type: audio-classification |
|
dataset: |
|
name: GTZAN |
|
type: marsyas/gtzan |
|
config: all |
|
split: train |
|
args: all |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.84 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilhubert-finetuned-gtzan |
|
|
|
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2162 |
|
- Accuracy: 0.84 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 6e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 2.2216 | 1.0 | 57 | 2.1520 | 0.45 | |
|
| 1.704 | 2.0 | 114 | 1.6254 | 0.59 | |
|
| 1.1885 | 3.0 | 171 | 1.1741 | 0.7 | |
|
| 0.8575 | 4.0 | 228 | 0.9653 | 0.7 | |
|
| 0.6822 | 5.0 | 285 | 0.8219 | 0.81 | |
|
| 0.5103 | 6.0 | 342 | 0.7254 | 0.8 | |
|
| 0.4386 | 7.0 | 399 | 0.6772 | 0.84 | |
|
| 0.2862 | 8.0 | 456 | 0.7047 | 0.8 | |
|
| 0.1639 | 9.0 | 513 | 0.7126 | 0.8 | |
|
| 0.0998 | 10.0 | 570 | 0.8339 | 0.77 | |
|
| 0.0585 | 11.0 | 627 | 0.7380 | 0.8 | |
|
| 0.0256 | 12.0 | 684 | 0.7606 | 0.84 | |
|
| 0.0201 | 13.0 | 741 | 0.8292 | 0.83 | |
|
| 0.0058 | 14.0 | 798 | 0.9495 | 0.83 | |
|
| 0.0029 | 15.0 | 855 | 1.1009 | 0.82 | |
|
| 0.0016 | 16.0 | 912 | 1.1451 | 0.82 | |
|
| 0.001 | 17.0 | 969 | 1.1886 | 0.84 | |
|
| 0.0071 | 18.0 | 1026 | 1.1731 | 0.84 | |
|
| 0.0004 | 19.0 | 1083 | 1.2255 | 0.84 | |
|
| 0.0003 | 20.0 | 1140 | 1.2162 | 0.84 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.19.1 |
|
|