|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- seanghay/khPOS |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
widget: |
|
- text: គាត់ផឹកទឹកនៅភ្នំពេញ |
|
- text: តើលោកស្រីបានសាកសួរទៅគាត់ទេ? |
|
- text: នេត្រា មិនដឹងសោះថាអ្នកជាមនុស្ស! |
|
model-index: |
|
- name: khmer-pos-roberta-10 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: kh_pos |
|
type: kh_pos |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9511876225757245 |
|
- name: Recall |
|
type: recall |
|
value: 0.9526407682234832 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9519136408243376 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9735370853522176 |
|
language: |
|
- km |
|
library_name: transformers |
|
pipeline_tag: token-classification |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Khmer Part of Speech Tagging with XLM RoBERTa |
|
|
|
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [khPOS](https://huggingface.co/seanghay/khPOS) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1063 |
|
- Precision: 0.9512 |
|
- Recall: 0.9526 |
|
- F1: 0.9519 |
|
- Accuracy: 0.9735 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 24 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 450 | 0.1347 | 0.9314 | 0.9333 | 0.9324 | 0.9603 | |
|
| 0.4834 | 2.0 | 900 | 0.1183 | 0.9407 | 0.9377 | 0.9392 | 0.9653 | |
|
| 0.1323 | 3.0 | 1350 | 0.1026 | 0.9484 | 0.9482 | 0.9483 | 0.9699 | |
|
| 0.095 | 4.0 | 1800 | 0.0986 | 0.9502 | 0.9490 | 0.9496 | 0.9712 | |
|
| 0.0774 | 5.0 | 2250 | 0.0978 | 0.9494 | 0.9491 | 0.9493 | 0.9712 | |
|
| 0.0616 | 6.0 | 2700 | 0.0991 | 0.9493 | 0.9507 | 0.9500 | 0.9715 | |
|
| 0.0494 | 7.0 | 3150 | 0.0989 | 0.9529 | 0.9540 | 0.9534 | 0.9731 | |
|
| 0.0414 | 8.0 | 3600 | 0.1037 | 0.9499 | 0.9501 | 0.9500 | 0.9722 | |
|
| 0.0339 | 9.0 | 4050 | 0.1056 | 0.9516 | 0.9517 | 0.9516 | 0.9734 | |
|
| 0.029 | 10.0 | 4500 | 0.1063 | 0.9512 | 0.9526 | 0.9519 | 0.9735 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |