|
--- |
|
library_name: sklearn |
|
tags: |
|
- sklearn |
|
- skops |
|
- text-classification |
|
--- |
|
|
|
# Model description |
|
|
|
This is a logistic regression model trained with GPT-2 embeddings on imdb dataset. |
|
The notebook to generate this model is in this repository and in this [kaggle link](https://www.kaggle.com/code/unofficialmerve/scikit-learn-with-transformers-with-skops/notebook). |
|
|
|
## Intended uses & limitations |
|
|
|
This model is trained for educational purposes. |
|
|
|
## Training Procedure |
|
|
|
### Hyperparameters |
|
|
|
The model is trained with below hyperparameters. |
|
|
|
<details> |
|
<summary> Click to expand </summary> |
|
|
|
| Hyperparameter | Value | |
|
|-------------------------------|-------------------------------------------------------------------------------------------------------------------| |
|
| memory | | |
|
| steps | [('embedding', HFTransformersLanguage(model_name_or_path='facebook/bart-base')), ('model', LogisticRegression())] | |
|
| verbose | False | |
|
| embedding | HFTransformersLanguage(model_name_or_path='facebook/bart-base') | |
|
| model | LogisticRegression() | |
|
| embedding__model_name_or_path | facebook/bart-base | |
|
| model__C | 1.0 | |
|
| model__class_weight | | |
|
| model__dual | False | |
|
| model__fit_intercept | True | |
|
| model__intercept_scaling | 1 | |
|
| model__l1_ratio | | |
|
| model__max_iter | 100 | |
|
| model__multi_class | auto | |
|
| model__n_jobs | | |
|
| model__penalty | l2 | |
|
| model__random_state | | |
|
| model__solver | lbfgs | |
|
| model__tol | 0.0001 | |
|
| model__verbose | 0 | |
|
| model__warm_start | False | |
|
|
|
</details> |
|
|
|
### Model Plot |
|
|
|
The model plot is below. |
|
|
|
<style>#sk-c17251a9-68a0-4b34-a80a-a89592893866 {color: black;background-color: white;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 pre{padding: 0;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 div.sk-toggleable {background-color: white;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-c17251a9-68a0-4b34-a80a-a89592893866 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 div.sk-estimator:hover {background-color: #d4ebff;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 div.sk-item {z-index: 1;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 div.sk-parallel-item:only-child::after {width: 0;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-c17251a9-68a0-4b34-a80a-a89592893866 div.sk-text-repr-fallback {display: none;}</style><div id="sk-c17251a9-68a0-4b34-a80a-a89592893866" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('embedding',HFTransformersLanguage(model_name_or_path='facebook/bart-base')),('model', LogisticRegression())])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="cae9454b-9d5c-424d-bbf8-8256c92c6733" type="checkbox" ><label for="cae9454b-9d5c-424d-bbf8-8256c92c6733" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('embedding',HFTransformersLanguage(model_name_or_path='facebook/bart-base')),('model', LogisticRegression())])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="0e6ffcb1-dfbc-44ef-9a7c-c15d496369c7" type="checkbox" ><label for="0e6ffcb1-dfbc-44ef-9a7c-c15d496369c7" class="sk-toggleable__label sk-toggleable__label-arrow">HFTransformersLanguage</label><div class="sk-toggleable__content"><pre>HFTransformersLanguage(model_name_or_path='facebook/bart-base')</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="b8eb1956-cf67-40f5-96f2-c2f0a0a41704" type="checkbox" ><label for="b8eb1956-cf67-40f5-96f2-c2f0a0a41704" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression()</pre></div></div></div></div></div></div></div> |
|
|
|
## Evaluation Results |
|
|
|
You can find the details about evaluation process and the evaluation results. |
|
|
|
|
|
|
|
| Metric | Value | |
|
|----------|----------| |
|
| f1_score | 0.867535 | |
|
|
|
# How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
<details> |
|
<summary> Click to expand </summary> |
|
|
|
```python |
|
[More Information Needed] |
|
``` |
|
|
|
</details> |
|
|
|
|
|
``` |
|
|
|
|
|
# Additional Content |
|
|
|
## Confusion matrix |
|
|
|
![Confusion matrix](confusion_matrix.png) |