Edit model card

vit-base-patch16-224-Trial008-YEL_STEM2

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1024
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 30
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 120
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7598 0.67 1 0.6968 0.6471
0.7294 2.0 3 0.7662 0.4706
0.6662 2.67 4 0.7196 0.5882
0.5662 4.0 6 0.3941 0.8235
0.4781 4.67 7 0.3458 0.8235
0.3259 6.0 9 0.1699 0.9412
0.2903 6.67 10 0.1024 1.0
0.2206 8.0 12 0.0788 1.0
0.3215 8.67 13 0.0414 1.0
0.1741 10.0 15 0.0218 1.0
0.2222 10.67 16 0.0207 1.0
0.1534 12.0 18 0.0128 1.0
0.273 12.67 19 0.0103 1.0
0.2021 14.0 21 0.0080 1.0
0.2193 14.67 22 0.0100 1.0
0.2132 16.0 24 0.0247 1.0
0.2163 16.67 25 0.0266 1.0
0.1626 18.0 27 0.0101 1.0
0.2492 18.67 28 0.0059 1.0
0.1308 20.0 30 0.0056 1.0
0.2144 20.67 31 0.0060 1.0
0.1389 22.0 33 0.0044 1.0
0.2548 22.67 34 0.0040 1.0
0.1324 24.0 36 0.0037 1.0
0.1958 24.67 37 0.0036 1.0
0.2476 26.0 39 0.0035 1.0
0.1439 26.67 40 0.0033 1.0
0.1202 28.0 42 0.0030 1.0
0.1368 28.67 43 0.0028 1.0
0.1016 30.0 45 0.0027 1.0
0.1282 30.67 46 0.0027 1.0
0.1128 32.0 48 0.0026 1.0
0.2366 32.67 49 0.0026 1.0
0.1727 33.33 50 0.0026 1.0

Framework versions

  • Transformers 4.30.0.dev0
  • Pytorch 1.12.1
  • Datasets 2.12.0
  • Tokenizers 0.13.1
Downloads last month
20
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results