Edit model card

vit-base-patch16-224-Trial008-YEL_STEM1

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1847
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 60
  • eval_batch_size: 60
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 240
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5774 1.0 1 0.6707 0.5294
0.3598 2.0 3 0.5525 0.8235
0.1477 3.0 5 0.3968 0.9412
0.3936 4.0 6 0.4487 0.6471
0.3762 5.0 7 0.3782 0.7647
0.2275 6.0 9 0.1847 1.0
0.099 7.0 11 0.2053 0.9412
0.2703 8.0 12 0.1943 0.9412
0.2363 9.0 13 0.1228 0.9412
0.1336 10.0 15 0.0758 1.0
0.0772 11.0 17 0.0553 1.0
0.2227 12.0 18 0.0449 1.0
0.1975 13.0 19 0.0417 1.0
0.1401 14.0 21 0.0391 1.0
0.0541 15.0 23 0.0216 1.0
0.1465 16.0 24 0.0232 1.0
0.1583 17.0 25 0.0274 1.0
0.1226 18.0 27 0.0372 1.0
0.0826 19.0 29 0.0333 1.0
0.1634 20.0 30 0.0219 1.0
0.1904 21.0 31 0.0135 1.0
0.0755 22.0 33 0.0080 1.0
0.055 23.0 35 0.0071 1.0
0.1598 24.0 36 0.0072 1.0
0.1805 25.0 37 0.0068 1.0
0.1093 26.0 39 0.0062 1.0
0.0446 27.0 41 0.0061 1.0
0.1377 28.0 42 0.0062 1.0
0.1474 29.0 43 0.0063 1.0
0.0817 30.0 45 0.0066 1.0
0.0527 31.0 47 0.0067 1.0
0.1161 32.0 48 0.0067 1.0
0.1972 33.0 49 0.0067 1.0
0.0708 33.33 50 0.0067 1.0

Framework versions

  • Transformers 4.30.0.dev0
  • Pytorch 1.12.1
  • Datasets 2.12.0
  • Tokenizers 0.13.1
Downloads last month
19
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results