update model card README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value:
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.
|
35 |
-
- Accuracy:
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -66,56 +66,40 @@ The following hyperparameters were used during training:
|
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.2816 | 35.0 | 35 | 0.0350 | 1.0 |
|
104 |
-
| 0.2602 | 36.0 | 36 | 0.0358 | 1.0 |
|
105 |
-
| 0.3128 | 37.0 | 37 | 0.0388 | 1.0 |
|
106 |
-
| 0.326 | 38.0 | 38 | 0.0498 | 1.0 |
|
107 |
-
| 0.3228 | 39.0 | 39 | 0.0702 | 1.0 |
|
108 |
-
| 0.3073 | 40.0 | 40 | 0.0782 | 0.9630 |
|
109 |
-
| 0.3266 | 41.0 | 41 | 0.0721 | 0.9630 |
|
110 |
-
| 0.3546 | 42.0 | 42 | 0.0579 | 1.0 |
|
111 |
-
| 0.2832 | 43.0 | 43 | 0.0487 | 1.0 |
|
112 |
-
| 0.2872 | 44.0 | 44 | 0.0428 | 1.0 |
|
113 |
-
| 0.2699 | 45.0 | 45 | 0.0395 | 1.0 |
|
114 |
-
| 0.3002 | 46.0 | 46 | 0.0391 | 1.0 |
|
115 |
-
| 0.327 | 47.0 | 47 | 0.0390 | 1.0 |
|
116 |
-
| 0.2746 | 48.0 | 48 | 0.0387 | 1.0 |
|
117 |
-
| 0.2781 | 49.0 | 49 | 0.0386 | 1.0 |
|
118 |
-
| 0.2925 | 50.0 | 50 | 0.0386 | 1.0 |
|
119 |
|
120 |
|
121 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 0.9411764705882353
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.0958
|
35 |
+
- Accuracy: 0.9412
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 0.544 | 1.0 | 1 | 0.8179 | 0.4118 |
|
70 |
+
| 0.3416 | 2.0 | 3 | 0.7448 | 0.5294 |
|
71 |
+
| 0.1412 | 3.0 | 5 | 0.7606 | 0.5294 |
|
72 |
+
| 0.4868 | 4.0 | 6 | 0.5647 | 0.6471 |
|
73 |
+
| 0.3852 | 5.0 | 7 | 0.4646 | 0.8235 |
|
74 |
+
| 0.284 | 6.0 | 9 | 0.4300 | 0.8235 |
|
75 |
+
| 0.1075 | 7.0 | 11 | 0.4628 | 0.8235 |
|
76 |
+
| 0.3243 | 8.0 | 12 | 0.4687 | 0.7647 |
|
77 |
+
| 0.3317 | 9.0 | 13 | 0.4089 | 0.8235 |
|
78 |
+
| 0.146 | 10.0 | 15 | 0.3330 | 0.8824 |
|
79 |
+
| 0.0762 | 11.0 | 17 | 0.2941 | 0.8824 |
|
80 |
+
| 0.2351 | 12.0 | 18 | 0.3217 | 0.8824 |
|
81 |
+
| 0.2458 | 13.0 | 19 | 0.3705 | 0.8824 |
|
82 |
+
| 0.1431 | 14.0 | 21 | 0.3138 | 0.8824 |
|
83 |
+
| 0.0883 | 15.0 | 23 | 0.1510 | 0.9412 |
|
84 |
+
| 0.1601 | 16.0 | 24 | 0.1373 | 0.9412 |
|
85 |
+
| 0.2212 | 17.0 | 25 | 0.1175 | 0.9412 |
|
86 |
+
| 0.1311 | 18.0 | 27 | 0.1130 | 0.9412 |
|
87 |
+
| 0.0801 | 19.0 | 29 | 0.1506 | 0.9412 |
|
88 |
+
| 0.1857 | 20.0 | 30 | 0.1272 | 0.9412 |
|
89 |
+
| 0.241 | 21.0 | 31 | 0.0974 | 0.9412 |
|
90 |
+
| 0.1098 | 22.0 | 33 | 0.0593 | 1.0 |
|
91 |
+
| 0.0464 | 23.0 | 35 | 0.0574 | 1.0 |
|
92 |
+
| 0.1757 | 24.0 | 36 | 0.0554 | 1.0 |
|
93 |
+
| 0.1992 | 25.0 | 37 | 0.0605 | 1.0 |
|
94 |
+
| 0.1167 | 26.0 | 39 | 0.0818 | 0.9412 |
|
95 |
+
| 0.0703 | 27.0 | 41 | 0.1177 | 0.9412 |
|
96 |
+
| 0.1382 | 28.0 | 42 | 0.1281 | 0.9412 |
|
97 |
+
| 0.1563 | 29.0 | 43 | 0.1357 | 0.9412 |
|
98 |
+
| 0.1113 | 30.0 | 45 | 0.1417 | 0.8824 |
|
99 |
+
| 0.0639 | 31.0 | 47 | 0.1250 | 0.9412 |
|
100 |
+
| 0.1564 | 32.0 | 48 | 0.1107 | 0.9412 |
|
101 |
+
| 0.1877 | 33.0 | 49 | 0.1002 | 0.9412 |
|
102 |
+
| 0.06 | 33.33 | 50 | 0.0958 | 0.9412 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
|
105 |
### Framework versions
|