sbaner24's picture
update model card README.md
56d8f61
|
raw
history blame
4.53 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-Trial007-YEL_STEM2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9814814814814815

vit-base-patch16-224-Trial007-YEL_STEM2

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1172
  • Accuracy: 0.9815

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 60
  • eval_batch_size: 60
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 240
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6676 0.89 2 0.6180 0.7222
0.5805 1.78 4 0.5004 0.7593
0.5012 2.67 6 0.3783 0.9630
0.2794 4.0 9 0.2285 0.9630
0.2695 4.89 11 0.2551 0.8889
0.2782 5.78 13 0.1079 0.9630
0.2131 6.67 15 0.1205 0.9630
0.1537 8.0 18 0.1861 0.9630
0.1739 8.89 20 0.1172 0.9815
0.1059 9.78 22 0.1092 0.9815
0.146 10.67 24 0.1072 0.9815
0.088 12.0 27 0.1015 0.9815
0.1304 12.89 29 0.1151 0.9815
0.0924 13.78 31 0.1313 0.9815
0.091 14.67 33 0.1178 0.9815
0.0508 16.0 36 0.0971 0.9815
0.1004 16.89 38 0.1175 0.9815
0.1097 17.78 40 0.1423 0.9630
0.0758 18.67 42 0.1597 0.9630
0.0687 20.0 45 0.1205 0.9815
0.0513 20.89 47 0.1107 0.9815
0.0755 21.78 49 0.1150 0.9815
0.0897 22.67 51 0.1332 0.9630
0.0439 24.0 54 0.1263 0.9815
0.0607 24.89 56 0.1111 0.9815
0.0719 25.78 58 0.1004 0.9815
0.0599 26.67 60 0.1064 0.9815
0.0613 28.0 63 0.1355 0.9815
0.0689 28.89 65 0.1444 0.9815
0.0754 29.78 67 0.1398 0.9815
0.0835 30.67 69 0.1345 0.9815
0.0801 32.0 72 0.1348 0.9815
0.0701 32.89 74 0.1365 0.9815
0.0647 33.78 76 0.1348 0.9815
0.0982 34.67 78 0.1346 0.9815
0.0671 36.0 81 0.1378 0.9815
0.054 36.89 83 0.1371 0.9815
0.0735 37.78 85 0.1355 0.9815
0.0736 38.67 87 0.1349 0.9815
0.0287 40.0 90 0.1329 0.9815
0.0539 40.89 92 0.1322 0.9815
0.0483 41.78 94 0.1324 0.9815
0.083 42.67 96 0.1319 0.9815
0.0558 44.0 99 0.1319 0.9815
0.0752 44.44 100 0.1319 0.9815

Framework versions

  • Transformers 4.30.0.dev0
  • Pytorch 1.12.1
  • Datasets 2.12.0
  • Tokenizers 0.13.1