sbaner24's picture
update model card README.md
5a58317
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-Trial006_007_008-YEL_STEM1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 1

vit-base-patch16-224-Trial006_007_008-YEL_STEM1

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0453
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 30
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 120
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7064 1.0 5 0.6605 0.5373
0.5838 2.0 10 0.5289 0.8358
0.4909 3.0 15 0.3967 0.8209
0.3317 4.0 20 0.2759 0.9104
0.2813 5.0 25 0.1820 0.9403
0.2948 6.0 30 0.1286 0.9552
0.2253 7.0 35 0.0453 1.0
0.2125 8.0 40 0.0408 1.0
0.1288 9.0 45 0.0177 1.0
0.1084 10.0 50 0.0265 1.0
0.1642 11.0 55 0.0994 0.9403
0.149 12.0 60 0.0316 0.9851
0.1315 13.0 65 0.0325 0.9851
0.1101 14.0 70 0.1090 0.9701
0.1101 15.0 75 0.0094 1.0
0.0702 16.0 80 0.0070 1.0
0.1184 17.0 85 0.0634 0.9851
0.1506 18.0 90 0.0104 1.0
0.1027 19.0 95 0.0149 1.0
0.159 20.0 100 0.1021 0.9552
0.1205 21.0 105 0.0085 1.0
0.1511 22.0 110 0.0248 0.9851
0.2228 23.0 115 0.0993 0.9552
0.1431 24.0 120 0.0373 0.9851
0.1489 25.0 125 0.0161 1.0
0.0799 26.0 130 0.0382 0.9851
0.1411 27.0 135 0.0071 1.0
0.1457 28.0 140 0.0047 1.0
0.1434 29.0 145 0.0069 1.0
0.0913 30.0 150 0.0032 1.0
0.1354 31.0 155 0.0042 1.0
0.1253 32.0 160 0.0061 1.0
0.1065 33.0 165 0.0039 1.0
0.1199 34.0 170 0.0023 1.0
0.1274 35.0 175 0.0037 1.0
0.1118 36.0 180 0.0100 1.0
0.1237 37.0 185 0.0053 1.0
0.1311 38.0 190 0.0028 1.0
0.1833 39.0 195 0.0026 1.0
0.0858 40.0 200 0.0033 1.0
0.1503 41.0 205 0.0049 1.0
0.0547 42.0 210 0.0037 1.0
0.1647 43.0 215 0.0037 1.0
0.1066 44.0 220 0.0061 1.0
0.1277 45.0 225 0.0083 1.0
0.0885 46.0 230 0.0083 1.0
0.1339 47.0 235 0.0081 1.0
0.0904 48.0 240 0.0073 1.0
0.079 49.0 245 0.0080 1.0
0.0788 50.0 250 0.0086 1.0

Framework versions

  • Transformers 4.30.0.dev0
  • Pytorch 1.12.1
  • Datasets 2.12.0
  • Tokenizers 0.13.1