Edit model card
%%capture
# Installs Unsloth, Xformers (Flash Attention) and all other packages!
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install --no-deps "xformers<0.0.27" "trl<0.9.0" peft accelerate bitsandbytes


from unsloth import FastLanguageModel
import torch
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.

model_name = "sartifyllc/sartify_gemma2-2B-16bit"


model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = model_name,
    max_seq_length = max_seq_length,
    dtype = dtype,
    trust_remote_code=True,
    # load_in_4bit = load_in_4bit,
    # token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)

alpaca_prompt = """Hapo chini kuna maelezo ya kazi, pamoja na maelezo ya ziada yanayotoa muktadha zaidi. Andika jibu ambalo linakamilisha ombi hilo ipasavyo.

### Maelezo:
{}

### Ziada:
{}

### Jibu:
{}"""

FastLanguageModel.for_inference(model) # Enable native 2x faster inference

# alpaca_prompt = Copied from above

inputs = tokenizer(
[
    alpaca_prompt.format(
        "Rudia tu kila kitu ninachosema kwa Kiingereza kwa Kiswahili wala usiseme chochote kingine.", # instruction
        "Who is the president of Tanzania?", # input
        "", # output - leave this blank for generation!
    )
], return_tensors = "pt").to("cuda")

from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)
Downloads last month
24
Safetensors
Model size
2.61B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.