metadata
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1115700
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: Geotrend/bert-base-sw-cased
datasets: []
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Ndege mwenye mdomo mrefu katikati ya ndege.
sentences:
- Panya anayekimbia juu ya gurudumu.
- Mtu anashindana katika mashindano ya mbio.
- Ndege anayeruka.
- source_sentence: >-
Msichana mchanga mwenye nywele nyeusi anakabili kamera na kushikilia mfuko
wa karatasi wakati amevaa shati la machungwa na mabawa ya kipepeo yenye
rangi nyingi.
sentences:
- Mwanamke mzee anakataa kupigwa picha.
- mtu akila na mvulana mdogo kwenye kijia cha jiji
- Msichana mchanga anakabili kamera.
- source_sentence: >-
Wanawake na watoto wameketi nje katika kivuli wakati kikundi cha watoto
wadogo wameketi ndani katika kivuli.
sentences:
- Mwanamke na watoto na kukaa chini.
- Mwanamke huyo anakimbia.
- Watu wanasafiri kwa baiskeli.
- source_sentence: >-
Mtoto mdogo anaruka mikononi mwa mwanamke aliyevalia suti nyeusi ya
kuogelea akiwa kwenye dimbwi.
sentences:
- >-
Mtoto akiruka mikononi mwa mwanamke aliyevalia suti ya kuogelea kwenye
dimbwi.
- Someone is holding oranges and walking
- Mama na binti wakinunua viatu.
- source_sentence: >-
Mwanamume na mwanamke wachanga waliovaa mikoba wanaweka au kuondoa kitu
kutoka kwenye mti mweupe wa zamani, huku watu wengine wamesimama au
wameketi nyuma.
sentences:
- tai huruka
- mwanamume na mwanamke wenye mikoba
- Wanaume wawili wameketi karibu na mwanamke.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on Geotrend/bert-base-sw-cased
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 768
type: sts-test-768
metrics:
- type: pearson_cosine
value: 0.6937245827269046
name: Pearson Cosine
- type: spearman_cosine
value: 0.6872564222432196
name: Spearman Cosine
- type: pearson_manhattan
value: 0.6671541268726737
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6578428252987948
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6672292642346008
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6577692881532263
name: Spearman Euclidean
- type: pearson_dot
value: 0.5234944445417878
name: Pearson Dot
- type: spearman_dot
value: 0.5126395384896926
name: Spearman Dot
- type: pearson_max
value: 0.6937245827269046
name: Pearson Max
- type: spearman_max
value: 0.6872564222432196
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 512
type: sts-test-512
metrics:
- type: pearson_cosine
value: 0.689885399601221
name: Pearson Cosine
- type: spearman_cosine
value: 0.6847071916895495
name: Spearman Cosine
- type: pearson_manhattan
value: 0.6678379220949281
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6579957115799916
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6673062843667007
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6573006123381013
name: Spearman Euclidean
- type: pearson_dot
value: 0.49533316366864977
name: Pearson Dot
- type: spearman_dot
value: 0.48723679408818543
name: Spearman Dot
- type: pearson_max
value: 0.689885399601221
name: Pearson Max
- type: spearman_max
value: 0.6847071916895495
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 256
type: sts-test-256
metrics:
- type: pearson_cosine
value: 0.6873377612773459
name: Pearson Cosine
- type: spearman_cosine
value: 0.6816874105466478
name: Spearman Cosine
- type: pearson_manhattan
value: 0.667357515297651
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6557727891191705
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6674937201647584
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6560441259953166
name: Spearman Euclidean
- type: pearson_dot
value: 0.45660372834373963
name: Pearson Dot
- type: spearman_dot
value: 0.4533070407260065
name: Spearman Dot
- type: pearson_max
value: 0.6873377612773459
name: Pearson Max
- type: spearman_max
value: 0.6816874105466478
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 128
type: sts-test-128
metrics:
- type: pearson_cosine
value: 0.6836009506667413
name: Pearson Cosine
- type: spearman_cosine
value: 0.6795423695973911
name: Spearman Cosine
- type: pearson_manhattan
value: 0.6663652896396122
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6534731725514219
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6663726876345561
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6537216014002204
name: Spearman Euclidean
- type: pearson_dot
value: 0.43102957451470686
name: Pearson Dot
- type: spearman_dot
value: 0.431538008932168
name: Spearman Dot
- type: pearson_max
value: 0.6836009506667413
name: Pearson Max
- type: spearman_max
value: 0.6795423695973911
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 64
type: sts-test-64
metrics:
- type: pearson_cosine
value: 0.6715253560367674
name: Pearson Cosine
- type: spearman_cosine
value: 0.669070001537953
name: Spearman Cosine
- type: pearson_manhattan
value: 0.6571390159051358
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6456119247619697
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6598587843081631
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6472279949159918
name: Spearman Euclidean
- type: pearson_dot
value: 0.36757468941627225
name: Pearson Dot
- type: spearman_dot
value: 0.3678274698380672
name: Spearman Dot
- type: pearson_max
value: 0.6715253560367674
name: Pearson Max
- type: spearman_max
value: 0.669070001537953
name: Spearman Max
SentenceTransformer based on Geotrend/bert-base-sw-cased
This is a sentence-transformers model finetuned from Geotrend/bert-base-sw-cased on the Mollel/swahili-n_li-triplet-swh-eng dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Geotrend/bert-base-sw-cased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Mollel/swahili-n_li-triplet-swh-eng
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("sartifyllc/MultiLinguSwahili-bert-base-sw-cased-nli-matryoshka")
sentences = [
'Mwanamume na mwanamke wachanga waliovaa mikoba wanaweka au kuondoa kitu kutoka kwenye mti mweupe wa zamani, huku watu wengine wamesimama au wameketi nyuma.',
'mwanamume na mwanamke wenye mikoba',
'tai huruka',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.6937 |
spearman_cosine |
0.6873 |
pearson_manhattan |
0.6672 |
spearman_manhattan |
0.6578 |
pearson_euclidean |
0.6672 |
spearman_euclidean |
0.6578 |
pearson_dot |
0.5235 |
spearman_dot |
0.5126 |
pearson_max |
0.6937 |
spearman_max |
0.6873 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.6899 |
spearman_cosine |
0.6847 |
pearson_manhattan |
0.6678 |
spearman_manhattan |
0.658 |
pearson_euclidean |
0.6673 |
spearman_euclidean |
0.6573 |
pearson_dot |
0.4953 |
spearman_dot |
0.4872 |
pearson_max |
0.6899 |
spearman_max |
0.6847 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.6873 |
spearman_cosine |
0.6817 |
pearson_manhattan |
0.6674 |
spearman_manhattan |
0.6558 |
pearson_euclidean |
0.6675 |
spearman_euclidean |
0.656 |
pearson_dot |
0.4566 |
spearman_dot |
0.4533 |
pearson_max |
0.6873 |
spearman_max |
0.6817 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.6836 |
spearman_cosine |
0.6795 |
pearson_manhattan |
0.6664 |
spearman_manhattan |
0.6535 |
pearson_euclidean |
0.6664 |
spearman_euclidean |
0.6537 |
pearson_dot |
0.431 |
spearman_dot |
0.4315 |
pearson_max |
0.6836 |
spearman_max |
0.6795 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.6715 |
spearman_cosine |
0.6691 |
pearson_manhattan |
0.6571 |
spearman_manhattan |
0.6456 |
pearson_euclidean |
0.6599 |
spearman_euclidean |
0.6472 |
pearson_dot |
0.3676 |
spearman_dot |
0.3678 |
pearson_max |
0.6715 |
spearman_max |
0.6691 |
Training Details
Training Dataset
Mollel/swahili-n_li-triplet-swh-eng
- Dataset: Mollel/swahili-n_li-triplet-swh-eng
- Size: 1,115,700 training samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 9 tokens
- mean: 16.73 tokens
- max: 71 tokens
|
- min: 6 tokens
- mean: 19.74 tokens
- max: 45 tokens
|
- min: 6 tokens
- mean: 19.0 tokens
- max: 49 tokens
|
- Samples:
anchor |
positive |
negative |
A person on a horse jumps over a broken down airplane. |
A person is outdoors, on a horse. |
A person is at a diner, ordering an omelette. |
Mtu aliyepanda farasi anaruka juu ya ndege iliyovunjika. |
Mtu yuko nje, juu ya farasi. |
Mtu yuko kwenye mkahawa, akiagiza omelette. |
Children smiling and waving at camera |
There are children present |
The kids are frowning |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
Mollel/swahili-n_li-triplet-swh-eng
- Dataset: Mollel/swahili-n_li-triplet-swh-eng
- Size: 13,168 evaluation samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 7 tokens
- mean: 28.25 tokens
- max: 82 tokens
|
- min: 5 tokens
- mean: 14.16 tokens
- max: 55 tokens
|
- min: 5 tokens
- mean: 15.55 tokens
- max: 46 tokens
|
- Samples:
anchor |
positive |
negative |
Two women are embracing while holding to go packages. |
Two woman are holding packages. |
The men are fighting outside a deli. |
Wanawake wawili wanakumbatiana huku wakishikilia vifurushi vya kwenda. |
Wanawake wawili wanashikilia vifurushi. |
Wanaume hao wanapigana nje ya duka la vyakula vitamu. |
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. |
Two kids in numbered jerseys wash their hands. |
Two kids in jackets walk to school. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 32
learning_rate
: 2e-05
num_train_epochs
: 1
warmup_ratio
: 0.1
bf16
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 32
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 1
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch |
Step |
Training Loss |
sts-test-128_spearman_cosine |
sts-test-256_spearman_cosine |
sts-test-512_spearman_cosine |
sts-test-64_spearman_cosine |
sts-test-768_spearman_cosine |
0.0057 |
100 |
19.9104 |
- |
- |
- |
- |
- |
0.0115 |
200 |
15.4038 |
- |
- |
- |
- |
- |
0.0172 |
300 |
12.4565 |
- |
- |
- |
- |
- |
0.0229 |
400 |
11.8633 |
- |
- |
- |
- |
- |
0.0287 |
500 |
11.0601 |
- |
- |
- |
- |
- |
0.0344 |
600 |
9.7725 |
- |
- |
- |
- |
- |
0.0402 |
700 |
8.8549 |
- |
- |
- |
- |
- |
0.0459 |
800 |
8.0831 |
- |
- |
- |
- |
- |
0.0516 |
900 |
7.9941 |
- |
- |
- |
- |
- |
0.0574 |
1000 |
7.6537 |
- |
- |
- |
- |
- |
0.0631 |
1100 |
7.9303 |
- |
- |
- |
- |
- |
0.0688 |
1200 |
7.5246 |
- |
- |
- |
- |
- |
0.0746 |
1300 |
7.7754 |
- |
- |
- |
- |
- |
0.0803 |
1400 |
7.668 |
- |
- |
- |
- |
- |
0.0860 |
1500 |
6.7171 |
- |
- |
- |
- |
- |
0.0918 |
1600 |
6.347 |
- |
- |
- |
- |
- |
0.0975 |
1700 |
6.0 |
- |
- |
- |
- |
- |
0.1033 |
1800 |
6.4314 |
- |
- |
- |
- |
- |
0.1090 |
1900 |
6.7947 |
- |
- |
- |
- |
- |
0.1147 |
2000 |
6.9316 |
- |
- |
- |
- |
- |
0.1205 |
2100 |
6.6304 |
- |
- |
- |
- |
- |
0.1262 |
2200 |
6.132 |
- |
- |
- |
- |
- |
0.1319 |
2300 |
5.8953 |
- |
- |
- |
- |
- |
0.1377 |
2400 |
5.6954 |
- |
- |
- |
- |
- |
0.1434 |
2500 |
5.6832 |
- |
- |
- |
- |
- |
0.1491 |
2600 |
5.2266 |
- |
- |
- |
- |
- |
0.1549 |
2700 |
5.0678 |
- |
- |
- |
- |
- |
0.1606 |
2800 |
5.4733 |
- |
- |
- |
- |
- |
0.1664 |
2900 |
6.0899 |
- |
- |
- |
- |
- |
0.1721 |
3000 |
6.332 |
- |
- |
- |
- |
- |
0.1778 |
3100 |
6.4937 |
- |
- |
- |
- |
- |
0.1836 |
3200 |
6.2242 |
- |
- |
- |
- |
- |
0.1893 |
3300 |
5.8023 |
- |
- |
- |
- |
- |
0.1950 |
3400 |
5.0745 |
- |
- |
- |
- |
- |
0.2008 |
3500 |
5.5806 |
- |
- |
- |
- |
- |
0.2065 |
3600 |
5.5191 |
- |
- |
- |
- |
- |
0.2122 |
3700 |
5.3849 |
- |
- |
- |
- |
- |
0.2180 |
3800 |
5.4828 |
- |
- |
- |
- |
- |
0.2237 |
3900 |
5.9982 |
- |
- |
- |
- |
- |
0.2294 |
4000 |
5.6842 |
- |
- |
- |
- |
- |
0.2352 |
4100 |
5.1627 |
- |
- |
- |
- |
- |
0.2409 |
4200 |
5.154 |
- |
- |
- |
- |
- |
0.2467 |
4300 |
5.7932 |
- |
- |
- |
- |
- |
0.2524 |
4400 |
5.5758 |
- |
- |
- |
- |
- |
0.2581 |
4500 |
5.5212 |
- |
- |
- |
- |
- |
0.2639 |
4600 |
5.5692 |
- |
- |
- |
- |
- |
0.2696 |
4700 |
5.2699 |
- |
- |
- |
- |
- |
0.2753 |
4800 |
5.4919 |
- |
- |
- |
- |
- |
0.2811 |
4900 |
5.0754 |
- |
- |
- |
- |
- |
0.2868 |
5000 |
5.1514 |
- |
- |
- |
- |
- |
0.2925 |
5100 |
5.0241 |
- |
- |
- |
- |
- |
0.2983 |
5200 |
5.2679 |
- |
- |
- |
- |
- |
0.3040 |
5300 |
5.3576 |
- |
- |
- |
- |
- |
0.3098 |
5400 |
5.3454 |
- |
- |
- |
- |
- |
0.3155 |
5500 |
5.2142 |
- |
- |
- |
- |
- |
0.3212 |
5600 |
4.8418 |
- |
- |
- |
- |
- |
0.3270 |
5700 |
4.9597 |
- |
- |
- |
- |
- |
0.3327 |
5800 |
5.1989 |
- |
- |
- |
- |
- |
0.3384 |
5900 |
5.2624 |
- |
- |
- |
- |
- |
0.3442 |
6000 |
5.0705 |
- |
- |
- |
- |
- |
0.3499 |
6100 |
5.232 |
- |
- |
- |
- |
- |
0.3556 |
6200 |
5.2428 |
- |
- |
- |
- |
- |
0.3614 |
6300 |
4.755 |
- |
- |
- |
- |
- |
0.3671 |
6400 |
4.7266 |
- |
- |
- |
- |
- |
0.3729 |
6500 |
4.6452 |
- |
- |
- |
- |
- |
0.3786 |
6600 |
5.1431 |
- |
- |
- |
- |
- |
0.3843 |
6700 |
4.5343 |
- |
- |
- |
- |
- |
0.3901 |
6800 |
4.698 |
- |
- |
- |
- |
- |
0.3958 |
6900 |
4.6944 |
- |
- |
- |
- |
- |
0.4015 |
7000 |
4.6255 |
- |
- |
- |
- |
- |
0.4073 |
7100 |
5.0211 |
- |
- |
- |
- |
- |
0.4130 |
7200 |
4.6974 |
- |
- |
- |
- |
- |
0.4187 |
7300 |
4.9182 |
- |
- |
- |
- |
- |
0.4245 |
7400 |
4.652 |
- |
- |
- |
- |
- |
0.4302 |
7500 |
5.1015 |
- |
- |
- |
- |
- |
0.4360 |
7600 |
4.5249 |
- |
- |
- |
- |
- |
0.4417 |
7700 |
4.455 |
- |
- |
- |
- |
- |
0.4474 |
7800 |
4.8153 |
- |
- |
- |
- |
- |
0.4532 |
7900 |
4.7665 |
- |
- |
- |
- |
- |
0.4589 |
8000 |
4.3413 |
- |
- |
- |
- |
- |
0.4646 |
8100 |
4.4697 |
- |
- |
- |
- |
- |
0.4704 |
8200 |
4.6776 |
- |
- |
- |
- |
- |
0.4761 |
8300 |
4.2868 |
- |
- |
- |
- |
- |
0.4818 |
8400 |
4.7052 |
- |
- |
- |
- |
- |
0.4876 |
8500 |
4.4721 |
- |
- |
- |
- |
- |
0.4933 |
8600 |
4.6926 |
- |
- |
- |
- |
- |
0.4991 |
8700 |
4.9891 |
- |
- |
- |
- |
- |
0.5048 |
8800 |
4.4837 |
- |
- |
- |
- |
- |
0.5105 |
8900 |
4.8127 |
- |
- |
- |
- |
- |
0.5163 |
9000 |
4.3438 |
- |
- |
- |
- |
- |
0.5220 |
9100 |
4.4743 |
- |
- |
- |
- |
- |
0.5277 |
9200 |
4.6879 |
- |
- |
- |
- |
- |
0.5335 |
9300 |
4.3593 |
- |
- |
- |
- |
- |
0.5392 |
9400 |
4.3023 |
- |
- |
- |
- |
- |
0.5449 |
9500 |
4.8188 |
- |
- |
- |
- |
- |
0.5507 |
9600 |
4.6142 |
- |
- |
- |
- |
- |
0.5564 |
9700 |
4.7679 |
- |
- |
- |
- |
- |
0.5622 |
9800 |
4.6224 |
- |
- |
- |
- |
- |
0.5679 |
9900 |
4.9154 |
- |
- |
- |
- |
- |
0.5736 |
10000 |
4.7557 |
- |
- |
- |
- |
- |
0.5794 |
10100 |
4.6395 |
- |
- |
- |
- |
- |
0.5851 |
10200 |
4.7977 |
- |
- |
- |
- |
- |
0.5908 |
10300 |
4.915 |
- |
- |
- |
- |
- |
0.5966 |
10400 |
4.4854 |
- |
- |
- |
- |
- |
0.6023 |
10500 |
4.3973 |
- |
- |
- |
- |
- |
0.6080 |
10600 |
4.6964 |
- |
- |
- |
- |
- |
0.6138 |
10700 |
4.8853 |
- |
- |
- |
- |
- |
0.6195 |
10800 |
4.786 |
- |
- |
- |
- |
- |
0.6253 |
10900 |
4.5482 |
- |
- |
- |
- |
- |
0.6310 |
11000 |
4.4857 |
- |
- |
- |
- |
- |
0.6367 |
11100 |
4.7415 |
- |
- |
- |
- |
- |
0.6425 |
11200 |
4.2596 |
- |
- |
- |
- |
- |
0.6482 |
11300 |
4.8578 |
- |
- |
- |
- |
- |
0.6539 |
11400 |
4.5471 |
- |
- |
- |
- |
- |
0.6597 |
11500 |
4.8337 |
- |
- |
- |
- |
- |
0.6654 |
11600 |
4.2244 |
- |
- |
- |
- |
- |
0.6711 |
11700 |
4.9619 |
- |
- |
- |
- |
- |
0.6769 |
11800 |
4.9369 |
- |
- |
- |
- |
- |
0.6826 |
11900 |
4.2697 |
- |
- |
- |
- |
- |
0.6883 |
12000 |
4.2711 |
- |
- |
- |
- |
- |
0.6941 |
12100 |
4.6396 |
- |
- |
- |
- |
- |
0.6998 |
12200 |
4.5626 |
- |
- |
- |
- |
- |
0.7056 |
12300 |
4.5767 |
- |
- |
- |
- |
- |
0.7113 |
12400 |
4.6449 |
- |
- |
- |
- |
- |
0.7170 |
12500 |
4.4217 |
- |
- |
- |
- |
- |
0.7228 |
12600 |
4.0203 |
- |
- |
- |
- |
- |
0.7285 |
12700 |
4.5381 |
- |
- |
- |
- |
- |
0.7342 |
12800 |
4.5865 |
- |
- |
- |
- |
- |
0.7400 |
12900 |
4.4203 |
- |
- |
- |
- |
- |
0.7457 |
13000 |
4.3761 |
- |
- |
- |
- |
- |
0.7514 |
13100 |
4.093 |
- |
- |
- |
- |
- |
0.7572 |
13200 |
5.9235 |
- |
- |
- |
- |
- |
0.7629 |
13300 |
5.4098 |
- |
- |
- |
- |
- |
0.7687 |
13400 |
5.3079 |
- |
- |
- |
- |
- |
0.7744 |
13500 |
5.0946 |
- |
- |
- |
- |
- |
0.7801 |
13600 |
4.7098 |
- |
- |
- |
- |
- |
0.7859 |
13700 |
4.9471 |
- |
- |
- |
- |
- |
0.7916 |
13800 |
4.5742 |
- |
- |
- |
- |
- |
0.7973 |
13900 |
4.6178 |
- |
- |
- |
- |
- |
0.8031 |
14000 |
4.4516 |
- |
- |
- |
- |
- |
0.8088 |
14100 |
4.429 |
- |
- |
- |
- |
- |
0.8145 |
14200 |
4.3812 |
- |
- |
- |
- |
- |
0.8203 |
14300 |
4.3739 |
- |
- |
- |
- |
- |
0.8260 |
14400 |
4.3821 |
- |
- |
- |
- |
- |
0.8318 |
14500 |
4.4396 |
- |
- |
- |
- |
- |
0.8375 |
14600 |
4.2667 |
- |
- |
- |
- |
- |
0.8432 |
14700 |
4.1963 |
- |
- |
- |
- |
- |
0.8490 |
14800 |
4.1298 |
- |
- |
- |
- |
- |
0.8547 |
14900 |
4.1843 |
- |
- |
- |
- |
- |
0.8604 |
15000 |
4.0735 |
- |
- |
- |
- |
- |
0.8662 |
15100 |
3.9319 |
- |
- |
- |
- |
- |
0.8719 |
15200 |
4.1544 |
- |
- |
- |
- |
- |
0.8776 |
15300 |
4.105 |
- |
- |
- |
- |
- |
0.8834 |
15400 |
4.014 |
- |
- |
- |
- |
- |
0.8891 |
15500 |
4.0345 |
- |
- |
- |
- |
- |
0.8949 |
15600 |
3.9127 |
- |
- |
- |
- |
- |
0.9006 |
15700 |
4.1002 |
- |
- |
- |
- |
- |
0.9063 |
15800 |
3.8564 |
- |
- |
- |
- |
- |
0.9121 |
15900 |
3.9297 |
- |
- |
- |
- |
- |
0.9178 |
16000 |
3.8487 |
- |
- |
- |
- |
- |
0.9235 |
16100 |
3.7099 |
- |
- |
- |
- |
- |
0.9293 |
16200 |
3.8545 |
- |
- |
- |
- |
- |
0.9350 |
16300 |
3.8122 |
- |
- |
- |
- |
- |
0.9407 |
16400 |
3.8951 |
- |
- |
- |
- |
- |
0.9465 |
16500 |
3.6996 |
- |
- |
- |
- |
- |
0.9522 |
16600 |
3.9081 |
- |
- |
- |
- |
- |
0.9580 |
16700 |
3.8603 |
- |
- |
- |
- |
- |
0.9637 |
16800 |
3.8534 |
- |
- |
- |
- |
- |
0.9694 |
16900 |
3.8145 |
- |
- |
- |
- |
- |
0.9752 |
17000 |
3.9858 |
- |
- |
- |
- |
- |
0.9809 |
17100 |
3.8224 |
- |
- |
- |
- |
- |
0.9866 |
17200 |
3.7469 |
- |
- |
- |
- |
- |
0.9924 |
17300 |
3.9066 |
- |
- |
- |
- |
- |
0.9981 |
17400 |
3.6754 |
- |
- |
- |
- |
- |
1.0 |
17433 |
- |
0.6795 |
0.6817 |
0.6847 |
0.6691 |
0.6873 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.40.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.29.3
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}