|
```diff |
|
import torch |
|
from transformers import WhisperForConditionalGeneration, WhisperProcessor |
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
|
|
model_id = "openai/whisper-large-v3" |
|
|
|
model = AutoModelForSpeechSeq2Seq.from_pretrained( |
|
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True |
|
).to(device) |
|
|
|
+ model.generation_config.cache_implementation = "static" |
|
+ model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True) |
|
|
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
pipe = pipeline( |
|
"automatic-speech-recognition", |
|
model=model, |
|
tokenizer=processor.tokenizer, |
|
feature_extractor=processor.feature_extractor, |
|
torch_dtype=torch_dtype, |
|
device=device, |
|
) |
|
|
|
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation") |
|
sample = dataset[0]["audio"] |
|
|
|
result = pipe(sample) |
|
print(result["text"]) |
|
``` |
|
|
|
|
|
<hfoptions id="gpu-select"> |
|
<hfoption id="CUDA GPU"> |
|
|
|
cuda code example |
|
|
|
</hfoption> |
|
<hfoption id="MPS"> |
|
|
|
mps code example |
|
|
|
</hfoption> |
|
</hfoptions> |