metadata
language:
- mn
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- mn
- model_for_talk
- mozilla-foundation/common_voice_8_0
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: sammy786/wav2vec2-xlsr-mongolian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: mn
metrics:
- name: Test WER
type: wer
value: 32.63
- name: Test CER
type: cer
value: 9.26
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: mn
metrics:
- name: Test WER
type: wer
value: 91.26
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: mn
metrics:
- name: Test WER
type: wer
value: 91.37
sammy786/wav2vec2-xlsr-mongolian
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - mn dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets):
- Loss: 31.52
- Wer: 34.1522
Model description
"facebook/wav2vec2-xls-r-1b" was finetuned.
Intended uses & limitations
More information needed
Training and evaluation data
Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv
Training procedure
For creating the train dataset, all possible datasets were appended and 90-10 split was used.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000045637994662983496
- train_batch_size: 16
- eval_batch_size: 16
- seed: 13
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Step | Training Loss | Validation Loss | Wer |
---|---|---|---|
200 | 4.906200 | 3.012986 | 1.000000 |
400 | 1.734600 | 0.704821 | 0.750497 |
600 | 1.132100 | 0.496223 | 0.531241 |
800 | 0.929300 | 0.468937 | 0.469043 |
1000 | 0.772300 | 0.425313 | 0.448168 |
1200 | 0.623900 | 0.394633 | 0.414229 |
1400 | 0.512400 | 0.369225 | 0.397614 |
1600 | 0.439900 | 0.346033 | 0.391650 |
1800 | 0.391300 | 0.358454 | 0.379296 |
2000 | 0.377000 | 0.346822 | 0.359415 |
2200 | 0.347500 | 0.325205 | 0.348481 |
2400 | 0.343600 | 0.315233 | 0.344078 |
2600 | 0.328000 | 0.308826 | 0.341522 |
2800 | 0.358200 | 0.331786 | 0.343084 |
3000 | 0.417200 | 0.370051 | 0.356433 |
3200 | 0.685300 | 0.595438 | 0.407413 |
3400 | 0.764100 | 0.643449 | 0.359983 |
3600 | 0.717100 | 0.505033 | 0.371911 |
3800 | 0.620900 | 0.464138 | 0.369071 |
4000 | 0.590700 | 0.445417 | 0.363249 |
4200 | 0.561000 | 0.440727 | 0.360267 |
4400 | 0.550600 | 0.447122 | 0.360267 |
4600 | 0.562100 | 0.457020 | 0.359841 |
4800 | 0.578800 | 0.470477 | 0.360551 |
5000 | 0.580400 | 0.481413 | 0.362539 |
5200 | 0.605500 | 0.485240 | 0.362823 |
5400 | 0.582900 | 0.486654 | 0.362965 |
5600 | 0.593900 | 0.486715 | 0.363107 |
5800 | 0.590900 | 0.486716 | 0.363107 |
6000 | 0.587200 | 0.486716 | 0.363107 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.10.3
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_8_0
with splittest
python eval.py --model_id sammy786/wav2vec2-xlsr-mongolian --dataset mozilla-foundation/common_voice_8_0 --config mn --split test