Taurus 7B 1.0
Description
Taurus is an OpenHermes 2.5 finetune using the Economicus dataset, an instruct dataset synthetically generated from Economics PhD textbooks.
The model was trained for 2 epochs (QLoRA) using axolotl. The exact config I used can be found here.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 66.40 |
AI2 Reasoning Challenge (25-Shot) | 63.57 |
HellaSwag (10-Shot) | 83.64 |
MMLU (5-Shot) | 63.50 |
TruthfulQA (0-shot) | 50.21 |
Winogrande (5-shot) | 78.14 |
GSM8k (5-shot) | 59.36 |
Prompt format
Taurus uses ChatML.
<|im_start|>system
System message
<|im_start|>user
User message<|im_end|>
<|im_start|>assistant
Usage
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
model_id = "rxavier/Taurus-7B-1.0"
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16, #torch.float16 for older GPUs
device_map="auto", # Requires having accelerate installed, useful in places like Colab with limited VRAM
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
generation_config = GenerationConfig(
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
)
system_message = "You are an expert in economics with PhD level knowledge. You are helpful, give thorough and clear explanations, and use equations and formulas where needed."
prompt = "Give me latex formulas for extended euler equations"
messages = [{"role": "system",
"content": system_message},
{"role": "user",
"content": prompt}]
tokens = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model.generate(inputs=tokens, generation_config=generation_config, max_length=512)
print(tokenizer.decode(outputs.cpu().tolist()[0]))
GGUF quants
You can find GGUF quants for llama.cpp here.
- Downloads last month
- 85
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for rxavier/Taurus-7B-1.0
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard63.570
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard83.640
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard63.500
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard50.210
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard78.140
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard59.360