Edit model card

Taurus 7B 1.0

image/png

Description

Taurus is an OpenHermes 2.5 finetune using the Economicus dataset, an instruct dataset synthetically generated from Economics PhD textbooks.

The model was trained for 2 epochs (QLoRA) using axolotl. The exact config I used can be found here.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 66.40
AI2 Reasoning Challenge (25-Shot) 63.57
HellaSwag (10-Shot) 83.64
MMLU (5-Shot) 63.50
TruthfulQA (0-shot) 50.21
Winogrande (5-shot) 78.14
GSM8k (5-shot) 59.36

Prompt format

Taurus uses ChatML.

<|im_start|>system
System message
<|im_start|>user
User message<|im_end|>
<|im_start|>assistant

Usage

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig


model_id = "rxavier/Taurus-7B-1.0"
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16, #torch.float16 for older GPUs
    device_map="auto", # Requires having accelerate installed, useful in places like Colab with limited VRAM
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
generation_config = GenerationConfig(
                bos_token_id=tokenizer.bos_token_id,
                eos_token_id=tokenizer.eos_token_id,
                pad_token_id=tokenizer.pad_token_id,
            )

system_message = "You are an expert in economics with PhD level knowledge. You are helpful, give thorough and clear explanations, and use equations and formulas where needed."
prompt = "Give me latex formulas for extended euler equations"

messages = [{"role": "system",
             "content": system_message},
            {"role": "user",
             "content": prompt}]
tokens = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")

with torch.no_grad():
    outputs = model.generate(inputs=tokens, generation_config=generation_config, max_length=512)
print(tokenizer.decode(outputs.cpu().tolist()[0]))

GGUF quants

You can find GGUF quants for llama.cpp here.

Downloads last month
85
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for rxavier/Taurus-7B-1.0

Finetuned
(71)
this model
Quantizations
1 model

Evaluation results