Text Generation
Transformers
llm-rs
ggml
Inference Endpoints
bloomz-ggml / README_TEMPLATE.md
LLukas22's picture
Update README_TEMPLATE.md
c7d1384
|
raw
history blame
3.05 kB
metadata
datasets:
  - bigscience/xP3
license: bigscience-bloom-rail-1.0
language:
  - ak
  - ar
  - as
  - bm
  - bn
  - ca
  - code
  - en
  - es
  - eu
  - fon
  - fr
  - gu
  - hi
  - id
  - ig
  - ki
  - kn
  - lg
  - ln
  - ml
  - mr
  - ne
  - nso
  - ny
  - or
  - pa
  - pt
  - rn
  - rw
  - sn
  - st
  - sw
  - ta
  - te
  - tn
  - ts
  - tum
  - tw
  - ur
  - vi
  - wo
  - xh
  - yo
  - zh
  - zu
programming_language:
  - C
  - C++
  - C#
  - Go
  - Java
  - JavaScript
  - Lua
  - PHP
  - Python
  - Ruby
  - Rust
  - Scala
  - TypeScript
tags:
  - llm-rs
  - ggml
pipeline_tag: text-generation

GGML covnerted Models of BigScience's Bloom models

Description

We present BLOOMZ & mT0, a family of models capable of following human instructions in dozens of languages zero-shot. We finetune BLOOM & mT5 pretrained multilingual language models on our crosslingual task mixture (xP3) and find the resulting models capable of crosslingual generalization to unseen tasks & languages.

Intended use

We recommend using the model to perform tasks expressed in natural language. For example, given the prompt "Translate to English: Je t’aime.", the model will most likely answer "I love you.". Some prompt ideas from our paper:

  • 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?
  • Suggest at least five related search terms to "Mạng neural nhân tạo".
  • Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish):
  • Explain in a sentence in Telugu what is backpropagation in neural networks.

Converted Models

$MODELS$

Usage

Python via llm-rs:

Installation

Via pip: pip install llm-rs

Run inference

from llm_rs import AutoModel

#Load the model, define any model you like from the list above as the `model_file`
model = AutoModel.from_pretrained("rustformers/bloomz-ggml",model_file="bloomz-3b-q4_0-ggjt.bin")

#Generate
print(model.generate("The meaning of life is"))

Rust via Rustformers/llm:

Installation

git clone --recurse-submodules https://github.com/rustformers/llm.git
cd llm
cargo build --release

Run inference

cargo run --release -- bloom infer -m path/to/model.bin  -p "Tell me how cool the Rust programming language is:"