roshna-omer's picture
End of training
17a7c24 verified
metadata
language:
  - ckb
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Small Kurdish - Sorani
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: ckb
          split: test
          args: 'config: ckb, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 34.21226977606996

Whisper Small Kurdish - Sorani

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3857
  • Wer: 34.2123

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4593 1.2330 1000 0.2504 42.2983
0.1318 2.4661 2000 0.2344 37.8429
0.0625 3.6991 3000 0.2582 35.9282
0.0274 4.9322 4000 0.2927 36.6139
0.009 6.1652 5000 0.3429 35.1365
0.0029 7.3983 6000 0.3625 34.7588
0.0008 8.6313 7000 0.3815 34.4740
0.0003 9.8644 8000 0.3857 34.2123

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.1+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1