mkshing's picture
Fix README
a3ec9ad
|
raw
history blame
1.51 kB
metadata
language: ja
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
tags:
  - ja
  - japanese
  - clip
  - cloob
  - vision

rinna/japanese-cloob-vit-b-16

rinna-icon

This repository provides a Japanese CLOOB (Contrastive Leave One Out Boost) model. The model was trained by rinna Co., Ltd.

How to use the model

  1. Install package
$ pip install git+https://github.com/rinnakk/japanese-clip.git
  1. Run
import io
import requests
from PIL import Image
import torch
import japanese_clip as ja_clip

device = "cuda" if torch.cuda.is_available() else "cpu"


model, preprocess = ja_clip.load("rinna/japanese-cloob-vit-b-16", device=device)
tokenizer = ja_clip.load_tokenizer()

img = Image.open(io.BytesIO(requests.get('https://images.pexels.com/photos/2253275/pexels-photo-2253275.jpeg?auto=compress&cs=tinysrgb&dpr=3&h=750&w=1260').content))
image = preprocess(img).unsqueeze(0).to(device)
encodings = ja_clip.tokenize(
    texts=["犬", "猫", "象"],
    max_seq_len=77,
    device=device,
    tokenizer=tokenizer, # this is optional. if you don't pass, load tokenizer each time
)

with torch.no_grad():
    image_features = model.get_image_features(image)
    text_features = model.get_text_features(**encodings)
    
    text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)

print("Label probs:", text_probs)  # prints: [[1.0, 0.0, 0.0]]