asahi417's picture
model update
0a5a177
|
raw
history blame
7.85 kB
metadata
license: cc-by-4.0
metrics:
  - bleu4
  - meteor
  - rouge-l
  - bertscore
  - moverscore
language: ru
datasets:
  - lmqg/qag_ruquad
pipeline_tag: text2text-generation
tags:
  - questions and answers generation
widget:
  - text: >-
      Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев,
      поначалу априорно выдвинув идею о температуре, при которой высота мениска
      будет нулевой, в мае 1860 года провёл серию опытов.
    example_title: Questions & Answers Generation Example 1
model-index:
  - name: lmqg/mbart-large-cc25-ruquad-qag
    results:
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qag_ruquad
          type: default
          args: default
        metrics:
          - name: BLEU4 (Question & Answer Generation)
            type: bleu4_question_answer_generation
            value: 4.33
          - name: ROUGE-L (Question & Answer Generation)
            type: rouge_l_question_answer_generation
            value: 18.59
          - name: METEOR (Question & Answer Generation)
            type: meteor_question_answer_generation
            value: 23.52
          - name: BERTScore (Question & Answer Generation)
            type: bertscore_question_answer_generation
            value: 69.58
          - name: MoverScore (Question & Answer Generation)
            type: moverscore_question_answer_generation
            value: 52.29
          - name: QAAlignedF1Score-BERTScore (Question & Answer Generation)
            type: qa_aligned_f1_score_bertscore_question_answer_generation
            value: 77.36
          - name: QAAlignedRecall-BERTScore (Question & Answer Generation)
            type: qa_aligned_recall_bertscore_question_answer_generation
            value: 80.05
          - name: QAAlignedPrecision-BERTScore (Question & Answer Generation)
            type: qa_aligned_precision_bertscore_question_answer_generation
            value: 74.97
          - name: QAAlignedF1Score-MoverScore (Question & Answer Generation)
            type: qa_aligned_f1_score_moverscore_question_answer_generation
            value: 56.1
          - name: QAAlignedRecall-MoverScore (Question & Answer Generation)
            type: qa_aligned_recall_moverscore_question_answer_generation
            value: 58.11
          - name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
            type: qa_aligned_precision_moverscore_question_answer_generation
            value: 54.4

Model Card of lmqg/mbart-large-cc25-ruquad-qag

This model is fine-tuned version of facebook/mbart-large-cc25 for question & answer pair generation task on the lmqg/qag_ruquad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="ru", model="lmqg/mbart-large-cc25-ruquad-qag")

# model prediction
question_answer_pairs = model.generate_qa("Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, в мае 1860 года провёл серию опытов.")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-ruquad-qag")
output = pipe("Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, в мае 1860 года провёл серию опытов.")

Evaluation

Score Type Dataset
BERTScore 69.58 default lmqg/qag_ruquad
Bleu_1 13.13 default lmqg/qag_ruquad
Bleu_2 8.29 default lmqg/qag_ruquad
Bleu_3 5.85 default lmqg/qag_ruquad
Bleu_4 4.33 default lmqg/qag_ruquad
METEOR 23.52 default lmqg/qag_ruquad
MoverScore 52.29 default lmqg/qag_ruquad
QAAlignedF1Score (BERTScore) 77.36 default lmqg/qag_ruquad
QAAlignedF1Score (MoverScore) 56.1 default lmqg/qag_ruquad
QAAlignedPrecision (BERTScore) 74.97 default lmqg/qag_ruquad
QAAlignedPrecision (MoverScore) 54.4 default lmqg/qag_ruquad
QAAlignedRecall (BERTScore) 80.05 default lmqg/qag_ruquad
QAAlignedRecall (MoverScore) 58.11 default lmqg/qag_ruquad
ROUGE_L 18.59 default lmqg/qag_ruquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qag_ruquad
  • dataset_name: default
  • input_types: ['paragraph']
  • output_types: ['questions_answers']
  • prefix_types: None
  • model: facebook/mbart-large-cc25
  • max_length: 512
  • max_length_output: 256
  • epoch: 6
  • batch: 2
  • lr: 0.0001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 32
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}