SentenceTransformer based on sentence-transformers/multi-qa-MiniLM-L6-cos-v1
This is a sentence-transformers model finetuned from sentence-transformers/multi-qa-MiniLM-L6-cos-v1. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/multi-qa-MiniLM-L6-cos-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Must have experience in software development',
"CEO of IMPROVLearning, specializing in e-learning and driver education. Founded and managed multiple ventures in training, healthcare, and real estate. Proven track record of expanding product offerings and achieving recognition on the Inc 500/5000 list. Active board member of the LA Chapter of the Entrepreneur Organization, contributing to the growth of over 3 million students. Experienced in venture capital and entrepreneurship, with a focus on innovative training solutions and community engagement. Active member of various organizations, including the Entrepreneurs' Organization and the Los Angeles County Business Federation.",
'Multi-skilled Business Analytics professional with a Master’s in Business Analytics and a dual MBA. Experienced in data analytics, predictive modeling, and project management within the health and wellness sector. Proficient in extracting, summarizing, and analyzing claims databases and healthcare analytics. Skilled in statistical analysis, database management, and data visualization. Previous roles include Business Analytics Advisor at Cigna Healthcare and Informatics Senior Specialist at Cigna Healthcare. Strong leadership and project management abilities, with a solid foundation in healthcare economics and outcomes observational research. Familiar with Base SAS 9.2, SAS EG, SAS EM, SAS JMP, Tableau, and Oracle Crystal Ball.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
validation
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9594 |
spearman_cosine | 0.8606 |
pearson_manhattan | 0.9437 |
spearman_manhattan | 0.8604 |
pearson_euclidean | 0.9443 |
spearman_euclidean | 0.8606 |
pearson_dot | 0.9594 |
spearman_dot | 0.8606 |
pearson_max | 0.9594 |
spearman_max | 0.8606 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,192,024 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 6 tokens
- mean: 9.15 tokens
- max: 17 tokens
- min: 53 tokens
- mean: 93.6 tokens
- max: 150 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
sentence_0 sentence_1 label Must have experience in software development
Executive Assistant with a strong background in real estate and financial services. Experienced in managing executive schedules, coordinating communications, and supporting investment banking operations. Proficient in office management software and adept at multitasking in fast-paced environments. Previous roles at Blackstone, Piper Sandler, and Broe Real Estate Group, where responsibilities included supporting high-level executives and enhancing operational efficiency. Skilled in fostering relationships and facilitating smooth transitions in fast-paced settings.
0.0
Must have experience in overseeing service delivery for health initiatives
Director of Solution Strategy in health, wellness, and fitness, specializing in relationship building and strategy execution. Experienced in overseeing service delivery and performance management for telehealth and digital health initiatives at Blue Cross Blue Shield of Massachusetts. Proven track record in vendor lifecycle management, contract strategy, and operational leadership. Skilled in developing standardized wellness programs and enhancing client satisfaction through innovative solutions. Strong background in managing cross-functional teams and driving performance metrics in health engagement and wellness services.
1.0
Must have experience collaborating with Fortune 500 companies
Senior Sales and Business Development Manager in the energy sector, specializing in increasing profitable sales for small to large companies. Proven track record in relationship building, team management, and strategy development. Experienced in collaborating with diverse stakeholders, including Fortune 500 companies and small to large privately held companies. Previous roles include Vice President of Operations at NovaStar LP and Director of Sales at NovaStar Mortgage and Athlon Solutions. Strong communicator and team player, with a focus on customer needs and operational efficiency.
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128num_train_epochs
: 1.0multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1.0max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | validation_spearman_max |
---|---|---|---|
0.0200 | 500 | 0.1362 | - |
0.0401 | 1000 | 0.0533 | - |
0.0601 | 1500 | 0.0433 | - |
0.0802 | 2000 | 0.0386 | - |
0.1002 | 2500 | 0.0356 | - |
0.1203 | 3000 | 0.0345 | - |
0.1403 | 3500 | 0.0326 | - |
0.1604 | 4000 | 0.0323 | - |
0.1804 | 4500 | 0.0313 | - |
0.2005 | 5000 | 0.0305 | - |
0.2205 | 5500 | 0.0298 | - |
0.2406 | 6000 | 0.0296 | - |
0.2606 | 6500 | 0.0291 | - |
0.2807 | 7000 | 0.0286 | - |
0.3007 | 7500 | 0.0286 | - |
0.3208 | 8000 | 0.0281 | - |
0.3408 | 8500 | 0.0278 | - |
0.3609 | 9000 | 0.0273 | - |
0.3809 | 9500 | 0.0276 | - |
0.4010 | 10000 | 0.0274 | - |
0.4210 | 10500 | 0.0266 | - |
0.4411 | 11000 | 0.0261 | - |
0.4611 | 11500 | 0.0264 | - |
0.4812 | 12000 | 0.0256 | - |
0.5012 | 12500 | 0.0254 | - |
0.5213 | 13000 | 0.0251 | - |
0.5413 | 13500 | 0.0249 | - |
0.5614 | 14000 | 0.0253 | - |
0.5814 | 14500 | 0.0247 | - |
0.6015 | 15000 | 0.0254 | - |
0.6215 | 15500 | 0.0246 | - |
0.6416 | 16000 | 0.0251 | - |
0.6616 | 16500 | 0.0248 | - |
0.6817 | 17000 | 0.0247 | - |
0.7017 | 17500 | 0.0246 | - |
0.7218 | 18000 | 0.0242 | - |
0.7418 | 18500 | 0.024 | - |
0.7619 | 19000 | 0.0247 | - |
0.7819 | 19500 | 0.0238 | - |
0.8020 | 20000 | 0.0244 | 0.8603 |
0.8220 | 20500 | 0.024 | - |
0.8421 | 21000 | 0.0244 | - |
0.8621 | 21500 | 0.0242 | - |
0.8822 | 22000 | 0.0239 | - |
0.9022 | 22500 | 0.0237 | - |
0.9223 | 23000 | 0.0241 | - |
0.9423 | 23500 | 0.0242 | - |
0.9624 | 24000 | 0.0238 | - |
0.9824 | 24500 | 0.0236 | - |
1.0 | 24938 | - | 0.8606 |
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.1
- Transformers: 4.44.1
- PyTorch: 2.4.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for recruitco/embedding_criteria_profile_summary_matching_qa_minilm_v1
Evaluation results
- Pearson Cosine on validationself-reported0.959
- Spearman Cosine on validationself-reported0.861
- Pearson Manhattan on validationself-reported0.944
- Spearman Manhattan on validationself-reported0.860
- Pearson Euclidean on validationself-reported0.944
- Spearman Euclidean on validationself-reported0.861
- Pearson Dot on validationself-reported0.959
- Spearman Dot on validationself-reported0.861
- Pearson Max on validationself-reported0.959
- Spearman Max on validationself-reported0.861