XLS-R-1B-ITALIAN-DOC4LM-5GRAM
Fine-tuned XLS-R 1B model for speech recognition in Italian
Fine-tuned facebook/wav2vec2-xls-r-1b on Italian using the train and validation splits of Common Voice 8.0, Multilingual TEDx, Multilingual LibriSpeech, and Voxpopuli.
When using this model, make sure that your speech input is sampled at 16kHz.
Language model information
Our language model was generated using a dataset of Italian wikipedia articles and manual transcriptions of radio newspapers and television programs.
Download CommonVoice8.0 dataset for italian language
from datasets import load_dataset
dataset = load_dataset("mozilla-foundation/common_voice_8_0", "it", use_auth_token=True)
Evaluation Commands
To evaluate on mozilla-foundation/common_voice_8_0
with split test
:
python eval.py --model_id radiogroup-crits/wav2vec2-xls-r-1b-italian-doc4lm-5gram --dataset mozilla-foundation/common_voice_8_0 --config it --split test --log_outputs --greedy
mv log_mozilla-foundation_common_voice_8_0_it_test_predictions.txt log_mozilla-foundation_common_voice_8_0_it_test_predictions_greedy.txt
mv log_mozilla-foundation_common_voice_8_0_it_test_targets.txt log_mozilla-foundation_common_voice_8_0_it_test_targets_greedy.txt
mv mozilla-foundation_common_voice_8_0_it_test_eval_results.txt mozilla-foundation_common_voice_8_0_it_test_eval_results_greedy.txt
python eval.py --model_id radiogroup-crits/wav2vec2-xls-r-1b-italian-doc4lm-5gram --dataset mozilla-foundation/common_voice_8_0 --config it --split test --log_outputs
mv log_mozilla-foundation_common_voice_8_0_it_test_predictions.txt log_mozilla-foundation_common_voice_8_0_it_test_predictions_lm.txt
mv log_mozilla-foundation_common_voice_8_0_it_test_targets.txt log_mozilla-foundation_common_voice_8_0_it_test_targets_lm.txt
mv mozilla-foundation_common_voice_8_0_it_test_eval_results.txt mozilla-foundation_common_voice_8_0_it_test_eval_results_lm.txt
Citation
If you want to cite this model you can use this:
@misc{crits2022wav2vec2-xls-r-1b-italian-doc4lm-5gram,
title={XLS-R Wav2Vec2 Italian by radiogroup crits},
author={Teraoni Prioletti Raffaele, Casagranda Paolo and Russo Francesco},
publisher={Hugging Face},
journal={Hugging Face Hub},
howpublished={\url{https://huggingface.co/radiogroup-crits/wav2vec2-xls-r-1b-italian-doc4lm-5gram}},
year={2022}
}
- Downloads last month
- 67
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train radiogroup-crits/wav2vec2-xls-r-1b-italian-doc4lm-5gram
Evaluation results
- Test WER on Common Voice 8.0 italianself-reported9.040
- Test CER on Common Voice 8.0 italianself-reported2.200
- Test WER (+LM) on Common Voice 8.0 italianself-reported6.240
- Test CER (+LM) on Common Voice 8.0 italianself-reported1.670