Edit model card

llama-3.1-8B-vision-378

Projection module trained to add vision capabilties to Llama 3 using SigLIP, then applied to Llama-3.1-8B-Instruct. Built by @yeswondwerr and @qtnx_.

Usage

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import requests
from io import BytesIO

url = "https://huggingface.co/qresearch/llama-3-vision-alpha-hf/resolve/main/assets/demo-2.jpg"
response = requests.get(url)
image = Image.open(BytesIO(response.content))


model = AutoModelForCausalLM.from_pretrained(
    "qresearch/llama-3.1-8B-vision-378",
    trust_remote_code=True,
    torch_dtype=torch.float16,
).to("cuda")

tokenizer = AutoTokenizer.from_pretrained("qresearch/llama-3.1-8B-vision-378", use_fast=True,)

print(
    model.answer_question(
        image, "Briefly describe the image", tokenizer, max_new_tokens=128, do_sample=True, temperature=0.3
    ),
)

4-bit quantization

import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import BitsAndBytesConfig
import requests
from io import BytesIO


url = "https://huggingface.co/qresearch/llama-3-vision-alpha-hf/resolve/main/assets/demo-2.jpg"
response = requests.get(url)
image = Image.open(BytesIO(response.content))

bnb_cfg = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16,
    llm_int8_skip_modules=["mm_projector", "vision_model"],
)

model = AutoModelForCausalLM.from_pretrained(
    "qresearch/llama-3.1-8B-vision-378",
    trust_remote_code=True,
    torch_dtype=torch.float16,
    quantization_config=bnb_cfg,
)

tokenizer = AutoTokenizer.from_pretrained(
    "qresearch/llama-3.1-8B-vision-378",
    use_fast=True,
)

print(
    model.answer_question(
        image, "Briefly describe the image", tokenizer, max_new_tokens=128, do_sample=True, temperature=0.3
    ),
)
                                       .x+=:.                                                             
                                      z`    ^%                                                  .uef^"    
               .u    .                   .   <k                           .u    .             :d88E       
    .u@u     .d88B :@8c       .u       .@8Ned8"      .u          u      .d88B :@8c        .   `888E       
 .zWF8888bx ="8888f8888r   ud8888.   .@^%8888"    ud8888.     us888u.  ="8888f8888r  .udR88N   888E .z8k  
.888  9888    4888>'88"  :888'8888. x88:  `)8b. :888'8888. .@88 "8888"   4888>'88"  <888'888k  888E~?888L 
I888  9888    4888> '    d888 '88%" 8888N=*8888 d888 '88%" 9888  9888    4888> '    9888 'Y"   888E  888E 
I888  9888    4888>      8888.+"     %8"    R88 8888.+"    9888  9888    4888>      9888       888E  888E 
I888  9888   .d888L .+   8888L        @8Wou 9%  8888L      9888  9888   .d888L .+   9888       888E  888E 
`888Nx?888   ^"8888*"    '8888c. .+ .888888P`   '8888c. .+ 9888  9888   ^"8888*"    ?8888u../  888E  888E 
 "88" '888      "Y"       "88888%   `   ^"F      "88888%   "888*""888"     "Y"       "8888P'  m888N= 888> 
       88E                  "YP'                   "YP'     ^Y"   ^Y'                  "P'     `Y"   888  
       98>                                                                                          J88"  
       '8                                                                                           @%    
        `                                                                                         :"
Downloads last month
893
Safetensors
Model size
8.48B params
Tensor type
FP16
Β·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Dataset used to train qresearch/llama-3.1-8B-vision-378

Spaces using qresearch/llama-3.1-8B-vision-378 2