File size: 12,997 Bytes
ec1cb04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import torch
import itertools
from util.image_pool import ImagePool
from .base_model import BaseModel
from . import networks

try:
    from apex import amp
except ImportError as error:
    print(error)


class CycleGANModel(BaseModel):
    """
    This class implements the CycleGAN model, for learning image-to-image translation without paired data.

    The model training requires '--dataset_mode unaligned' dataset.
    By default, it uses a '--netG resnet_9blocks' ResNet generator,
    a '--netD basic' discriminator (PatchGAN introduced by pix2pix),
    and a least-square GANs objective ('--gan_mode lsgan').

    CycleGAN paper: https://arxiv.org/pdf/1703.10593.pdf
    """

    @staticmethod
    def modify_commandline_options(parser, is_train=True):
        """Add new dataset-specific options, and rewrite default values for existing options.

        Parameters:
            parser          -- original option parser
            is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.

        Returns:
            the modified parser.

        For CycleGAN, in addition to GAN losses, we introduce lambda_A, lambda_B, and lambda_identity for the following losses.
        A (source domain), B (target domain).
        Generators: G_A: A -> B; G_B: B -> A.
        Discriminators: D_A: G_A(A) vs. B; D_B: G_B(B) vs. A.
        Forward cycle loss:  lambda_A * ||G_B(G_A(A)) - A|| (Eqn. (2) in the paper)
        Backward cycle loss: lambda_B * ||G_A(G_B(B)) - B|| (Eqn. (2) in the paper)
        Identity loss (optional): lambda_identity * (||G_A(B) - B|| * lambda_B + ||G_B(A) - A|| * lambda_A) (Sec 5.2 "Photo generation from paintings" in the paper)
        Dropout is not used in the original CycleGAN paper.
        """
        # parser.set_defaults(no_dropout=True, no_antialias=True, no_antialias_up=True)  # default CycleGAN did not use dropout
        # parser.set_defaults(no_dropout=True)
        if is_train:
            parser.add_argument(
                "--lambda_A",
                type=float,
                default=10.0,
                help="weight for cycle loss (A -> B -> A)",
            )
            parser.add_argument(
                "--lambda_B",
                type=float,
                default=10.0,
                help="weight for cycle loss (B -> A -> B)",
            )
            parser.add_argument(
                "--lambda_identity",
                type=float,
                default=0.5,
                help="use identity mapping. Setting lambda_identity other than 0 has an effect of scaling the weight of the identity mapping loss. For example, if the weight of the identity loss should be 10 times smaller than the weight of the reconstruction loss, please set lambda_identity = 0.1",
            )

        return parser

    def __init__(self, opt):
        """Initialize the CycleGAN class.

        Parameters:
            opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
        """
        BaseModel.__init__(self, opt)
        # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses>
        self.loss_names = [
            "D_A",
            "G_A",
            "cycle_A",
            "idt_A",
            "D_B",
            "G_B",
            "cycle_B",
            "idt_B",
        ]
        # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals>
        visual_names_A = ["real_A", "fake_B", "rec_A"]
        visual_names_B = ["real_B", "fake_A", "rec_B"]
        if (
            self.isTrain and self.opt.lambda_identity > 0.0
        ):  # if identity loss is used, we also visualize idt_B=G_A(B) ad idt_A=G_A(B)
            visual_names_A.append("idt_B")
            visual_names_B.append("idt_A")

        self.visual_names = (
            visual_names_A + visual_names_B
        )  # combine visualizations for A and B
        # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>.
        if self.isTrain:
            self.model_names = ["G_A", "G_B", "D_A", "D_B"]
        else:  # during test time, only load Gs
            self.model_names = ["G_A", "G_B"]

        # define networks (both Generators and discriminators)
        # The naming is different from those used in the paper.
        # Code (vs. paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X)
        self.netG_A = networks.define_G(
            opt.input_nc,
            opt.output_nc,
            opt.ngf,
            opt.netG,
            opt.normG,
            not opt.no_dropout,
            opt.init_type,
            opt.init_gain,
            opt.no_antialias,
            opt.no_antialias_up,
            self.gpu_ids,
            opt=opt,
        )
        self.netG_B = networks.define_G(
            opt.output_nc,
            opt.input_nc,
            opt.ngf,
            opt.netG,
            opt.normG,
            not opt.no_dropout,
            opt.init_type,
            opt.init_gain,
            opt.no_antialias,
            opt.no_antialias_up,
            self.gpu_ids,
            opt=opt,
        )

        if self.isTrain:  # define discriminators
            self.netD_A = networks.define_D(
                opt.output_nc,
                opt.ndf,
                opt.netD,
                opt.n_layers_D,
                opt.normD,
                opt.init_type,
                opt.init_gain,
                opt.no_antialias,
                self.gpu_ids,
                opt=opt,
            )
            self.netD_B = networks.define_D(
                opt.input_nc,
                opt.ndf,
                opt.netD,
                opt.n_layers_D,
                opt.normD,
                opt.init_type,
                opt.init_gain,
                opt.no_antialias,
                self.gpu_ids,
                opt=opt,
            )

        if self.isTrain:
            if (
                opt.lambda_identity > 0.0
            ):  # only works when input and output images have the same number of channels
                assert opt.input_nc == opt.output_nc
            self.fake_A_pool = ImagePool(
                opt.pool_size
            )  # create image buffer to store previously generated images
            self.fake_B_pool = ImagePool(
                opt.pool_size
            )  # create image buffer to store previously generated images
            # define loss functions
            self.criterionGAN = networks.GANLoss(opt.gan_mode).to(
                self.device
            )  # define GAN loss.
            self.criterionCycle = torch.nn.L1Loss()
            self.criterionIdt = torch.nn.L1Loss()
            # initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>.
            self.optimizer_G = torch.optim.Adam(
                itertools.chain(self.netG_A.parameters(), self.netG_B.parameters()),
                lr=opt.lr,
                betas=(opt.beta1, 0.999),
            )
            self.optimizer_D = torch.optim.Adam(
                itertools.chain(self.netD_A.parameters(), self.netD_B.parameters()),
                lr=opt.lr,
                betas=(opt.beta1, 0.999),
            )
            self.optimizers.append(self.optimizer_G)
            self.optimizers.append(self.optimizer_D)

    def set_input(self, input):
        """Unpack input data from the dataloader and perform necessary pre-processing steps.

        Parameters:
            input (dict): include the data itself and its metadata information.

        The option 'direction' can be used to swap domain A and domain B.
        """
        AtoB = self.opt.direction == "AtoB"
        self.real_A = input["A" if AtoB else "B"].to(self.device)
        self.real_B = input["B" if AtoB else "A"].to(self.device)
        self.image_paths = input["A_paths" if AtoB else "B_paths"]

    def forward(self):
        """Run forward pass; called by both functions <optimize_parameters> and <test>."""
        self.fake_B = self.netG_A(self.real_A)  # G_A(A)
        self.rec_A = self.netG_B(self.fake_B)  # G_B(G_A(A))
        self.fake_A = self.netG_B(self.real_B)  # G_B(B)
        self.rec_B = self.netG_A(self.fake_A)  # G_A(G_B(B))

    def backward_D_basic(self, netD, real, fake):
        """Calculate GAN loss for the discriminator

        Parameters:
            netD (network)      -- the discriminator D
            real (tensor array) -- real images
            fake (tensor array) -- images generated by a generator

        Return the discriminator loss.
        We also call loss_D.backward() to calculate the gradients.
        """
        # Real
        pred_real = netD(real)
        loss_D_real = self.criterionGAN(pred_real, True)
        # Fake
        pred_fake = netD(fake.detach())
        loss_D_fake = self.criterionGAN(pred_fake, False)
        # Combined loss and calculate gradients
        loss_D = (loss_D_real + loss_D_fake) * 0.5
        # if self.opt.amp:
        #     with amp.scale_loss(loss_D, self.optimizer_D) as scaled_loss:
        #         scaled_loss.backward()
        # else:
        loss_D.backward()
        return loss_D

    def backward_D_A(self):
        """Calculate GAN loss for discriminator D_A"""
        fake_B = self.fake_B_pool.query(self.fake_B)
        self.loss_D_A = self.backward_D_basic(self.netD_A, self.real_B, fake_B)

    def backward_D_B(self):
        """Calculate GAN loss for discriminator D_B"""
        fake_A = self.fake_A_pool.query(self.fake_A)
        self.loss_D_B = self.backward_D_basic(self.netD_B, self.real_A, fake_A)

    def backward_G(self):
        """Calculate the loss for generators G_A and G_B"""
        lambda_idt = self.opt.lambda_identity
        lambda_A = self.opt.lambda_A
        lambda_B = self.opt.lambda_B
        # Identity loss
        if lambda_idt > 0:
            # G_A should be identity if real_B is fed: ||G_A(B) - B||
            self.idt_A = self.netG_A(self.real_B)
            self.loss_idt_A = (
                self.criterionIdt(self.idt_A, self.real_B) * lambda_B * lambda_idt
            )
            # G_B should be identity if real_A is fed: ||G_B(A) - A||
            self.idt_B = self.netG_B(self.real_A)
            self.loss_idt_B = (
                self.criterionIdt(self.idt_B, self.real_A) * lambda_A * lambda_idt
            )
        else:
            self.loss_idt_A = 0
            self.loss_idt_B = 0

        # GAN loss D_A(G_A(A))
        self.loss_G_A = self.criterionGAN(self.netD_A(self.fake_B), True)
        # GAN loss D_B(G_B(B))
        self.loss_G_B = self.criterionGAN(self.netD_B(self.fake_A), True)
        # Forward cycle loss || G_B(G_A(A)) - A||
        self.loss_cycle_A = self.criterionCycle(self.rec_A, self.real_A) * lambda_A
        # Backward cycle loss || G_A(G_B(B)) - B||
        self.loss_cycle_B = self.criterionCycle(self.rec_B, self.real_B) * lambda_B
        # combined loss and calculate gradients
        self.loss_G = (
            self.loss_G_A
            + self.loss_G_B
            + self.loss_cycle_A
            + self.loss_cycle_B
            + self.loss_idt_A
            + self.loss_idt_B
        )
        # if self.opt.amp:
        #     with amp.scale_loss(self.loss_G, self.optimizer_G) as scaled_loss:
        #         scaled_loss.backward()
        # else:
        self.loss_G.backward()

    def data_dependent_initialize(self, *args, **kwargs):
        return

    def generate_visuals_for_evaluation(self, data, mode):
        with torch.no_grad():
            visuals = {}
            AtoB = self.opt.direction == "AtoB"
            G = self.netG_A
            source = data["A" if AtoB else "B"].to(self.device)
            if mode == "forward":
                visuals["fake_B"] = G(source)
            else:
                raise ValueError("mode %s is not recognized" % mode)
            return visuals

    def optimize_parameters(self):
        """Calculate losses, gradients, and update network weights; called in every training iteration"""
        # forward
        self.forward()  # compute fake images and reconstruction images.
        # G_A and G_B
        self.set_requires_grad(
            [self.netD_A, self.netD_B], False
        )  # Ds require no gradients when optimizing Gs
        self.optimizer_G.zero_grad()  # set G_A and G_B's gradients to zero
        self.backward_G()  # calculate gradients for G_A and G_B
        self.optimizer_G.step()  # update G_A and G_B's weights
        # D_A and D_B
        self.set_requires_grad([self.netD_A, self.netD_B], True)
        self.optimizer_D.zero_grad()  # set D_A and D_B's gradients to zero
        self.backward_D_A()  # calculate gradients for D_A
        self.backward_D_B()  # calculate graidents for D_B
        self.optimizer_D.step()  # update D_A and D_B's weights