LABSE BERT
Model description
Model for "Language-agnostic BERT Sentence Embedding" paper from Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Arivazhagan, Wei Wang. Model available in TensorFlow Hub.
Intended uses & limitations
How to use
from transformers import AutoTokenizer, AutoModel
import torch
# from sentence-transformers
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
return sum_embeddings / sum_mask
tokenizer = AutoTokenizer.from_pretrained("pvl/labse_bert", do_lower_case=False)
model = AutoModel.from_pretrained("pvl/labse_bert")
sentences = ['This framework generates embeddings for each input sentence',
'Sentences are passed as a list of string.',
'The quick brown fox jumps over the lazy dog.']
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
- Downloads last month
- 4,556