whisper-small-af-ZA / README.md
ptah23's picture
update model card README.md
0d26d00
metadata
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: whisper-small-af-ZA
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: af_za
          split: train+validation
          args: af_za
        metrics:
          - name: Wer
            type: wer
            value: 0.36644093303235514

whisper-small-af-ZA

This model is a fine-tuned version of openai/whisper-small on the google/fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5728
  • Wer: 0.3664
  • Wer Ortho: 0.3943

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 5
  • training_steps: 2000

Training results

Training Loss Epoch Step Validation Loss Wer Wer Ortho
0.7731 1.45 100 0.7280 0.3740 0.3863
0.2103 2.9 200 0.5116 0.3661 0.3859
0.0633 4.35 300 0.4967 0.2810 0.3008
0.0249 5.8 400 0.5003 0.3299 0.3477
0.0143 7.25 500 0.5191 0.3510 0.3660
0.0053 8.7 600 0.5149 0.3070 0.3221
0.0035 10.14 700 0.5345 0.3266 0.3443
0.0027 11.59 800 0.5339 0.3175 0.3344
0.0026 13.04 900 0.5435 0.3134 0.3328
0.0037 14.49 1000 0.5346 0.2506 0.2714
0.0045 15.94 1100 0.5438 0.3220 0.3389
0.0028 17.39 1200 0.5588 0.2551 0.2740
0.0036 18.84 1300 0.5466 0.2728 0.2702
0.0035 20.29 1400 0.5364 0.3119 0.3332
0.0056 21.74 1500 0.5608 0.2506 0.2721
0.0037 23.19 1600 0.5443 0.2833 0.3027
0.0035 24.64 1700 0.5466 0.3631 0.3866
0.0024 26.09 1800 0.5628 0.3198 0.3416
0.0036 27.54 1900 0.5495 0.2946 0.3122
0.0016 28.99 2000 0.5728 0.3664 0.3943

Framework versions

  • Transformers 4.31.0.dev0
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1