med-bert
NOTE: THE DATASET USED WAS JUST 31 ROWS AND HENCE THE MODEL DIDN'T ACHIEVE GOOD RESULTS. SPACY WAS ABLE TO PERFORM BETTER DUE TO LESS COMPLEXITY IN THE MODEL.
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.9379
- Precision: 0.0128
- Recall: 0.0794
- F1: 0.0221
- Accuracy: 0.1707
- All Metrics: {'MedicalCondition': {'precision': 0.011428571428571429, 'recall': 0.05714285714285714, 'f1': 0.019047619047619046, 'number': 35}, 'Medicine': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12}, 'Pathogen': {'precision': 0.03125, 'recall': 0.1875, 'f1': 0.05357142857142857, 'number': 16}, 'overall_precision': 0.01282051282051282, 'overall_recall': 0.07936507936507936, 'overall_f1': 0.02207505518763797, 'overall_accuracy': 0.17066290550070523}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-08
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | All Metrics |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 3 | 1.9408 | 0.0128 | 0.0794 | 0.0220 | 0.1693 | {'MedicalCondition': {'precision': 0.011428571428571429, 'recall': 0.05714285714285714, 'f1': 0.019047619047619046, 'number': 35}, 'Medicine': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12}, 'Pathogen': {'precision': 0.030927835051546393, 'recall': 0.1875, 'f1': 0.05309734513274336, 'number': 16}, 'overall_precision': 0.01278772378516624, 'overall_recall': 0.07936507936507936, 'overall_f1': 0.02202643171806167, 'overall_accuracy': 0.1692524682651622} |
No log | 2.0 | 6 | 1.9405 | 0.0128 | 0.0794 | 0.0220 | 0.1693 | {'MedicalCondition': {'precision': 0.011428571428571429, 'recall': 0.05714285714285714, 'f1': 0.019047619047619046, 'number': 35}, 'Medicine': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12}, 'Pathogen': {'precision': 0.030927835051546393, 'recall': 0.1875, 'f1': 0.05309734513274336, 'number': 16}, 'overall_precision': 0.01278772378516624, 'overall_recall': 0.07936507936507936, 'overall_f1': 0.02202643171806167, 'overall_accuracy': 0.1692524682651622} |
No log | 3.0 | 9 | 1.9402 | 0.0128 | 0.0794 | 0.0220 | 0.1693 | {'MedicalCondition': {'precision': 0.011428571428571429, 'recall': 0.05714285714285714, 'f1': 0.019047619047619046, 'number': 35}, 'Medicine': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12}, 'Pathogen': {'precision': 0.030927835051546393, 'recall': 0.1875, 'f1': 0.05309734513274336, 'number': 16}, 'overall_precision': 0.01278772378516624, 'overall_recall': 0.07936507936507936, 'overall_f1': 0.02202643171806167, 'overall_accuracy': 0.1692524682651622} |
No log | 4.0 | 12 | 1.9400 | 0.0128 | 0.0794 | 0.0220 | 0.1693 | {'MedicalCondition': {'precision': 0.011428571428571429, 'recall': 0.05714285714285714, 'f1': 0.019047619047619046, 'number': 35}, 'Medicine': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12}, 'Pathogen': {'precision': 0.030927835051546393, 'recall': 0.1875, 'f1': 0.05309734513274336, 'number': 16}, 'overall_precision': 0.01278772378516624, 'overall_recall': 0.07936507936507936, 'overall_f1': 0.02202643171806167, 'overall_accuracy': 0.1692524682651622} |
No log | 5.0 | 15 | 1.9397 | 0.0128 | 0.0794 | 0.0220 | 0.1693 | {'MedicalCondition': {'precision': 0.011428571428571429, 'recall': 0.05714285714285714, 'f1': 0.019047619047619046, 'number': 35}, 'Medicine': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12}, 'Pathogen': {'precision': 0.030927835051546393, 'recall': 0.1875, 'f1': 0.05309734513274336, 'number': 16}, 'overall_precision': 0.01278772378516624, 'overall_recall': 0.07936507936507936, 'overall_f1': 0.02202643171806167, 'overall_accuracy': 0.1692524682651622} |
No log | 6.0 | 18 | 1.9395 | 0.0128 | 0.0794 | 0.0220 | 0.1693 | {'MedicalCondition': {'precision': 0.011428571428571429, 'recall': 0.05714285714285714, 'f1': 0.019047619047619046, 'number': 35}, 'Medicine': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12}, 'Pathogen': {'precision': 0.030927835051546393, 'recall': 0.1875, 'f1': 0.05309734513274336, 'number': 16}, 'overall_precision': 0.01278772378516624, 'overall_recall': 0.07936507936507936, 'overall_f1': 0.02202643171806167, 'overall_accuracy': 0.1692524682651622} |
No log | 7.0 | 21 | 1.9392 | 0.0128 | 0.0794 | 0.0220 | 0.1693 | {'MedicalCondition': {'precision': 0.011428571428571429, 'recall': 0.05714285714285714, 'f1': 0.019047619047619046, 'number': 35}, 'Medicine': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12}, 'Pathogen': {'precision': 0.030927835051546393, 'recall': 0.1875, 'f1': 0.05309734513274336, 'number': 16}, 'overall_precision': 0.01278772378516624, 'overall_recall': 0.07936507936507936, 'overall_f1': 0.02202643171806167, 'overall_accuracy': 0.1692524682651622} |
No log | 8.0 | 24 | 1.9390 | 0.0128 | 0.0794 | 0.0221 | 0.1707 | {'MedicalCondition': {'precision': 0.011428571428571429, 'recall': 0.05714285714285714, 'f1': 0.019047619047619046, 'number': 35}, 'Medicine': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12}, 'Pathogen': {'precision': 0.03125, 'recall': 0.1875, 'f1': 0.05357142857142857, 'number': 16}, 'overall_precision': 0.01282051282051282, 'overall_recall': 0.07936507936507936, 'overall_f1': 0.02207505518763797, 'overall_accuracy': 0.17066290550070523} |
No log | 9.0 | 27 | 1.9388 | 0.0128 | 0.0794 | 0.0221 | 0.1707 | {'MedicalCondition': {'precision': 0.011428571428571429, 'recall': 0.05714285714285714, 'f1': 0.019047619047619046, 'number': 35}, 'Medicine': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12}, 'Pathogen': {'precision': 0.03125, 'recall': 0.1875, 'f1': 0.05357142857142857, 'number': 16}, 'overall_precision': 0.01282051282051282, 'overall_recall': 0.07936507936507936, 'overall_f1': 0.02207505518763797, 'overall_accuracy': 0.17066290550070523} |
No log | 10.0 | 30 | 1.9387 | 0.0128 | 0.0794 | 0.0221 | 0.1707 | {'MedicalCondition': {'precision': 0.011428571428571429, 'recall': 0.05714285714285714, 'f1': 0.019047619047619046, 'number': 35}, 'Medicine': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12}, 'Pathogen': {'precision': 0.03125, 'recall': 0.1875, 'f1': 0.05357142857142857, 'number': 16}, 'overall_precision': 0.01282051282051282, 'overall_recall': 0.07936507936507936, 'overall_f1': 0.02207505518763797, 'overall_accuracy': 0.17066290550070523} |
No log | 11.0 | 33 | 1.9385 | 0.0128 | 0.0794 | 0.0221 | 0.1707 | {'MedicalCondition': {'precision': 0.011428571428571429, 'recall': 0.05714285714285714, 'f1': 0.019047619047619046, 'number': 35}, 'Medicine': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12}, 'Pathogen': {'precision': 0.03125, 'recall': 0.1875, 'f1': 0.05357142857142857, 'number': 16}, 'overall_precision': 0.01282051282051282, 'overall_recall': 0.07936507936507936, 'overall_f1': 0.02207505518763797, 'overall_accuracy': 0.17066290550070523} |
No log | 12.0 | 36 | 1.9384 | 0.0128 | 0.0794 | 0.0221 | 0.1707 | {'MedicalCondition': {'precision': 0.011428571428571429, 'recall': 0.05714285714285714, 'f1': 0.019047619047619046, 'number': 35}, 'Medicine': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12}, 'Pathogen': {'precision': 0.03125, 'recall': 0.1875, 'f1': 0.05357142857142857, 'number': 16}, 'overall_precision': 0.01282051282051282, 'overall_recall': 0.07936507936507936, 'overall_f1': 0.02207505518763797, 'overall_accuracy': 0.17066290550070523} |
No log | 13.0 | 39 | 1.9383 | 0.0128 | 0.0794 | 0.0221 | 0.1707 | {'MedicalCondition': {'precision': 0.011428571428571429, 'recall': 0.05714285714285714, 'f1': 0.019047619047619046, 'number': 35}, 'Medicine': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12}, 'Pathogen': {'precision': 0.03125, 'recall': 0.1875, 'f1': 0.05357142857142857, 'number': 16}, 'overall_precision': 0.01282051282051282, 'overall_recall': 0.07936507936507936, 'overall_f1': 0.02207505518763797, 'overall_accuracy': 0.17066290550070523} |
No log | 14.0 | 42 | 1.9382 | 0.0128 | 0.0794 | 0.0221 | 0.1707 | {'MedicalCondition': {'precision': 0.011428571428571429, 'recall': 0.05714285714285714, 'f1': 0.019047619047619046, 'number': 35}, 'Medicine': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12}, 'Pathogen': {'precision': 0.03125, 'recall': 0.1875, 'f1': 0.05357142857142857, 'number': 16}, 'overall_precision': 0.01282051282051282, 'overall_recall': 0.07936507936507936, 'overall_f1': 0.02207505518763797, 'overall_accuracy': 0.17066290550070523} |
No log | 15.0 | 45 | 1.9381 | 0.0128 | 0.0794 | 0.0221 | 0.1707 | {'MedicalCondition': {'precision': 0.011428571428571429, 'recall': 0.05714285714285714, 'f1': 0.019047619047619046, 'number': 35}, 'Medicine': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12}, 'Pathogen': {'precision': 0.03125, 'recall': 0.1875, 'f1': 0.05357142857142857, 'number': 16}, 'overall_precision': 0.01282051282051282, 'overall_recall': 0.07936507936507936, 'overall_f1': 0.02207505518763797, 'overall_accuracy': 0.17066290550070523} |
No log | 16.0 | 48 | 1.9380 | 0.0128 | 0.0794 | 0.0221 | 0.1707 | {'MedicalCondition': {'precision': 0.011428571428571429, 'recall': 0.05714285714285714, 'f1': 0.019047619047619046, 'number': 35}, 'Medicine': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12}, 'Pathogen': {'precision': 0.03125, 'recall': 0.1875, 'f1': 0.05357142857142857, 'number': 16}, 'overall_precision': 0.01282051282051282, 'overall_recall': 0.07936507936507936, 'overall_f1': 0.02207505518763797, 'overall_accuracy': 0.17066290550070523} |
No log | 17.0 | 51 | 1.9380 | 0.0128 | 0.0794 | 0.0221 | 0.1707 | {'MedicalCondition': {'precision': 0.011428571428571429, 'recall': 0.05714285714285714, 'f1': 0.019047619047619046, 'number': 35}, 'Medicine': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12}, 'Pathogen': {'precision': 0.03125, 'recall': 0.1875, 'f1': 0.05357142857142857, 'number': 16}, 'overall_precision': 0.01282051282051282, 'overall_recall': 0.07936507936507936, 'overall_f1': 0.02207505518763797, 'overall_accuracy': 0.17066290550070523} |
No log | 18.0 | 54 | 1.9379 | 0.0128 | 0.0794 | 0.0221 | 0.1707 | {'MedicalCondition': {'precision': 0.011428571428571429, 'recall': 0.05714285714285714, 'f1': 0.019047619047619046, 'number': 35}, 'Medicine': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12}, 'Pathogen': {'precision': 0.03125, 'recall': 0.1875, 'f1': 0.05357142857142857, 'number': 16}, 'overall_precision': 0.01282051282051282, 'overall_recall': 0.07936507936507936, 'overall_f1': 0.02207505518763797, 'overall_accuracy': 0.17066290550070523} |
No log | 19.0 | 57 | 1.9379 | 0.0128 | 0.0794 | 0.0221 | 0.1707 | {'MedicalCondition': {'precision': 0.011428571428571429, 'recall': 0.05714285714285714, 'f1': 0.019047619047619046, 'number': 35}, 'Medicine': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12}, 'Pathogen': {'precision': 0.03125, 'recall': 0.1875, 'f1': 0.05357142857142857, 'number': 16}, 'overall_precision': 0.01282051282051282, 'overall_recall': 0.07936507936507936, 'overall_f1': 0.02207505518763797, 'overall_accuracy': 0.17066290550070523} |
No log | 20.0 | 60 | 1.9379 | 0.0128 | 0.0794 | 0.0221 | 0.1707 | {'MedicalCondition': {'precision': 0.011428571428571429, 'recall': 0.05714285714285714, 'f1': 0.019047619047619046, 'number': 35}, 'Medicine': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12}, 'Pathogen': {'precision': 0.03125, 'recall': 0.1875, 'f1': 0.05357142857142857, 'number': 16}, 'overall_precision': 0.01282051282051282, 'overall_recall': 0.07936507936507936, 'overall_f1': 0.02207505518763797, 'overall_accuracy': 0.17066290550070523} |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for praneethvasarla/med-bert
Base model
google-bert/bert-base-uncased