metadata
base_model: microsoft/mpnet-base
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:24901
- loss:SoftmaxLoss
widget:
- source_sentence: >-
Cryptocurrency holders are being exploited, with whales creating more
coins and profiting from their value.
sentences:
- Buyer purchases cryptocurrency from seller in exchange.
- >-
Price fluctuates due to fear and uncertainty, only time will reveal its
direction.
- >-
New user's post removed due to lack of required **karma** and account
age.
- source_sentence: >-
User seeks assistance with retrieving funds from a cryptocurrency
investment platform.
sentences:
- Bot removed post for being too short, resubmit with more characters.
- People enjoy walking while searching for digital currency in their area.
- >-
Cryptocurrency project's legitimacy unlikely due to complexity and
scrutiny in parachain development and ecosystem interactions.
- source_sentence: >-
Large cryptocurrencies' market dominance may change as new projects emerge
with exceptional utility and marketing.
sentences:
- Market experiencing significant decline.
- >-
Decentralized concept in crypto is main idea, but most coins are
centralized.
- Cryptocurrency users share information.
- source_sentence: Use XLM for low-cost transactions between exchanges, saving on fees.
sentences:
- Exchanges should automate process for increased activity.
- >-
Investment taxes vary by country, but generally apply after withdrawal,
with losses still needing declaration.
- Use basic version, buy coins with credit card.
- source_sentence: >-
New user seeks advice on storing Bitcoin and USDT on WazirX or Binance,
considering pros and cons.
sentences:
- >-
Buy cryptocurrency directly with credit card, but high fee makes Indian
exchange a better option.
- 'Cryptocurrency prices: Bitcoin, Ethereum, and others fluctuate.'
- Investor has faith in Tezos, making strategic moves.
SentenceTransformer based on microsoft/mpnet-base
This is a sentence-transformers model finetuned from microsoft/mpnet-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/mpnet-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pawan2411/crypto_nli")
# Run inference
sentences = [
'New user seeks advice on storing Bitcoin and USDT on WazirX or Binance, considering pros and cons.',
'Buy cryptocurrency directly with credit card, but high fee makes Indian exchange a better option.',
'Investor has faith in Tezos, making strategic moves.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 24,901 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string int details - min: 6 tokens
- mean: 21.86 tokens
- max: 61 tokens
- min: 6 tokens
- mean: 16.67 tokens
- max: 50 tokens
- 0: ~83.50%
- 1: ~16.50%
- Samples:
sentence_0 sentence_1 label User asks about tracing crypto swaps and process of exchanging digital currencies.
"Private cryptocurrency swap can't be traced."
0
Cryptocurrency project with weak fundamentals deserves to fail, cherish coins before next market downturn.
"Trust information in this community."
0
New user seeks advice on using crypto credit cards in daily life.
User uses digital wallet for cryptocurrency transactions, earning cashback rewards.
1
- Loss:
SoftmaxLoss
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 10multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
1.2821 | 500 | 0.3912 |
2.5641 | 1000 | 0.3157 |
3.8462 | 1500 | 0.2926 |
5.1282 | 2000 | 0.2788 |
6.4103 | 2500 | 0.2599 |
7.6923 | 3000 | 0.2428 |
8.9744 | 3500 | 0.2314 |
1.2821 | 500 | 0.2333 |
2.5641 | 1000 | 0.2292 |
3.8462 | 1500 | 0.1987 |
5.1282 | 2000 | 0.1757 |
6.4103 | 2500 | 0.1578 |
7.6923 | 3000 | 0.1413 |
8.9744 | 3500 | 0.1258 |
1.2821 | 500 | 0.1086 |
2.5641 | 1000 | 0.1048 |
3.8462 | 1500 | 0.0917 |
5.1282 | 2000 | 0.0805 |
6.4103 | 2500 | 0.0712 |
7.6923 | 3000 | 0.0673 |
8.9744 | 3500 | 0.0646 |
1.2821 | 500 | 0.0505 |
2.5641 | 1000 | 0.0511 |
3.8462 | 1500 | 0.046 |
5.1282 | 2000 | 0.0415 |
6.4103 | 2500 | 0.0396 |
7.6923 | 3000 | 0.0357 |
8.9744 | 3500 | 0.0382 |
1.2821 | 500 | 0.0252 |
2.5641 | 1000 | 0.029 |
3.8462 | 1500 | 0.0247 |
5.1282 | 2000 | 0.0233 |
6.4103 | 2500 | 0.0228 |
7.6923 | 3000 | 0.0218 |
8.9744 | 3500 | 0.0251 |
1.2821 | 500 | 0.0158 |
2.5641 | 1000 | 0.0184 |
3.8462 | 1500 | 0.0165 |
5.1282 | 2000 | 0.0139 |
6.4103 | 2500 | 0.0145 |
7.6923 | 3000 | 0.0139 |
8.9744 | 3500 | 0.0164 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers and SoftmaxLoss
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}