Edit model card

Hugo-7B-slerp

alt text

Hugo-7B-slerp is a successful merge of the following models using mergekit:

🧩 Configuration

slices:
  - sources:
      - model: mistralai/Mistral-7B-Instruct-v0.2
        layer_range: [0, 32]
      - model: beowolx/CodeNinja-1.0-OpenChat-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: mistralai/Mistral-7B-Instruct-v0.2
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

πŸ“ˆ Performance

Model Average ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K
paulilioaica/Hugo-7B-slerp 67.07 64.51 84.77 62.54 57.13 80.03 53.45
mistralai/Mistral-7B-Instruct-v0.2 65.71 63.14 84.88 60.78 68.26 77.19 40.03
beowolx/CodeNinja-1.0-OpenChat-7B 67.4 63.48 83.65 63.77 47.16 79.79 66.57

With bold one can see the benchmarks where this merge overtakes the basemodel in performance.

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "paulilioaica/Hugo-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "conversational",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(messages, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs)

πŸ›ˆ More on megekit

mergekit

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 67.07
AI2 Reasoning Challenge (25-Shot) 64.51
HellaSwag (10-Shot) 84.77
MMLU (5-Shot) 62.54
TruthfulQA (0-shot) 57.13
Winogrande (5-shot) 80.03
GSM8k (5-shot) 53.45
Downloads last month
73
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for paulilioaica/Hugo-7B-slerp

Evaluation results