Edit model card

unispeech-sat-base-plus-timit-ft

This model is a fine-tuned version of microsoft/unispeech-sat-base-plus on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6549
  • Wer: 0.4051

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.3838 0.69 100 3.2528 1.0
2.9608 1.38 200 2.9682 1.0
2.9574 2.07 300 2.9346 1.0
2.8555 2.76 400 2.7612 1.0
1.7418 3.45 500 1.5732 0.9857
0.9606 4.14 600 1.0014 0.7052
0.8334 4.83 700 0.7691 0.6161
0.852 5.52 800 0.7169 0.5997
0.5707 6.21 900 0.6821 0.5527
0.4235 6.9 1000 0.6078 0.5140
0.4357 7.59 1100 0.5927 0.4982
0.5004 8.28 1200 0.5814 0.4826
0.3757 8.97 1300 0.5951 0.4643
0.2579 9.66 1400 0.5990 0.4581
0.2087 10.34 1500 0.5864 0.4488
0.3155 11.03 1600 0.5836 0.4464
0.2701 11.72 1700 0.6045 0.4348
0.172 12.41 1800 0.6494 0.4344
0.1529 13.1 1900 0.5915 0.4241
0.2411 13.79 2000 0.6156 0.4246
0.2348 14.48 2100 0.6363 0.4206
0.1429 15.17 2200 0.6394 0.4161
0.1151 15.86 2300 0.6186 0.4167
0.1723 16.55 2400 0.6498 0.4124
0.1997 17.24 2500 0.6541 0.4076
0.1297 17.93 2600 0.6546 0.4117
0.101 18.62 2700 0.6471 0.4075
0.1272 19.31 2800 0.6586 0.4065
0.1901 20.0 2900 0.6549 0.4051

Framework versions

  • Transformers 4.12.0.dev0
  • Pytorch 1.8.1
  • Datasets 1.14.1.dev0
  • Tokenizers 0.10.3
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train patrickvonplaten/unispeech-sat-base-plus-timit-ft