bart-squad-qg-hl / README.md
p208p2002's picture
Update README.md
718a0bc
|
raw
history blame
2.01 kB
# Transformer QG on SQuAD
HLQG is Proposed by [Ying-Hong Chan & Yao-Chung Fan. (2019). A Re-current BERT-based Model for Question Generation.](https://www.aclweb.org/anthology/D19-5821/)
**This is a Reproduce Version**
More detail: [p208p2002/Transformer-QG-on-SQuAD](https://github.com/p208p2002/Transformer-QG-on-SQuAD)
## Usage
### Input Format
```
C' = [c1, c2, ..., [HL], a1, ..., a|A|, [HL], ..., c|C|]
```
### Input Example
```
Harry Potter is a series of seven fantasy novels written by British author, [HL]J. K. Rowling[HL].
```
> # Who wrote Harry Potter?
## Data setting
We report two dataset setting as Follow
### SQuAD
- train: 87599\\t
- validation: 10570
> [SQuAD: 100,000+ Questions for Machine Comprehension of Text](https://arxiv.org/abs/1606.05250)
### SQuAD NQG
- train: 75722
- dev: 10570
- test: 11877
> [Learning to Ask: Neural Question Generation for Reading Comprehension](https://arxiv.org/abs/1705.00106)
## Available models
- BART
- GPT2
- T5
## Expriments
We report score with `NQG Scorer` which is using in SQuAD NQG.
If not special explanation, the size of the model defaults to "base".
### SQuAD
Model |Bleu 1|Bleu 2|Bleu 3|Bleu 4|METEOR|ROUGE-L|
---------------------------------|------|------|------|------|------|-------|
BART-HLSQG |54.67 |39.26 |30.34 |24.15 |25.43 |52.64 |
GPT2-HLSQG |49.31 |33.95 |25.41| 19.69 |22.29 |48.82 |
T5-HLSQG |54.29 |39.22 |30.43 |24.26 |25.56 |53.11 |
### SQuAD NQG
Model |Bleu 1|Bleu 2|Bleu 3|Bleu 4|METEOR|ROUGE-L|
---------------------------------|------|------|------|------|------|-------|
BERT-HLSQG (Chan et al.) |49.73 |34.60 |26.13 |20.33 |23.88 |48.23 |
BART-HLSQG |54.12 |38.19 |28.84 |22.35 |24.55 |51.03 |
GPT2-HLSQG |49.82 |33.69 |24.71 |18.63 |21.90 |47.60 |
T5-HLSQG |53.13 |37.60 |28.62 |22.38 |24.48 |51.20 |