|
--- |
|
tags: |
|
- spacy |
|
- token-classification |
|
language: |
|
- en |
|
license: mit |
|
model-index: |
|
- name: en_legal_ner_trf |
|
results: [] |
|
--- |
|
Indian Legal Named Entity Recognition: Identifying relevant entities in an Indian legal document |
|
|
|
| Feature | Description | |
|
| --- | --- | |
|
| **Name** | `en_legal_ner_trf` | |
|
| **Version** | `3.2.0` | |
|
| **spaCy** | `>=3.2.2,<3.3.0` | |
|
| **Default Pipeline** | `transformer`, `ner` | |
|
| **Components** | `transformer`, `ner` | |
|
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | |
|
| **Sources** | [Indian Legal NER Training data](https://storage.googleapis.com/indianlegalbert/OPEN_SOURCED_FILES/NER/NER_TRAIN.zip) [GitHub](https://github.com/Legal-NLP-EkStep/legal_NER)| |
|
| **License** | `MIT` | |
|
| **Author** | [Aman Tiwari](https://www.linkedin.com/in/amant555/) | |
|
|
|
### Label Scheme |
|
|
|
<details> |
|
|
|
<summary>View label scheme (14 labels for 1 components)</summary> |
|
|
|
| Component | Labels | |
|
| --- | --- | |
|
| **`ner`** | `CASE_NUMBER`, `COURT`, `DATE`, `GPE`, `JUDGE`, `LAWYER`, `ORG`, `OTHER_PERSON`, `PETITIONER`, `PRECEDENT`, `PROVISION`, `RESPONDENT`, `STATUTE`, `WITNESS` | |
|
|
|
</details> |
|
|
|
### Accuracy |
|
|
|
| Type | Score | |
|
| --- | --- | |
|
| `Precision` | 91.474 | |
|
| `Recall` | 89.956 | |
|
| **`F1-Score`** | **90.709** | |
|
|