Token Classification
spaCy
English
Eval Results
en_legal_ner_trf / README.md
amant555's picture
Update README.md
fa3f249
|
raw
history blame
1.23 kB
---
tags:
- spacy
- token-classification
language:
- en
license: mit
model-index:
- name: en_legal_ner_trf
results: []
---
Indian Legal Named Entity Recognition: Identifying relevant entities in an Indian legal document
| Feature | Description |
| --- | --- |
| **Name** | `en_legal_ner_trf` |
| **Version** | `3.2.0` |
| **spaCy** | `>=3.2.2,<3.3.0` |
| **Default Pipeline** | `transformer`, `ner` |
| **Components** | `transformer`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Indian Legal NER Training data](https://storage.googleapis.com/indianlegalbert/OPEN_SOURCED_FILES/NER/NER_TRAIN.zip) [GitHub](https://github.com/Legal-NLP-EkStep/legal_NER)|
| **License** | `MIT` |
| **Author** | [Aman Tiwari](https://www.linkedin.com/in/amant555/) |
### Label Scheme
<details>
<summary>View label scheme (14 labels for 1 components)</summary>
| Component | Labels |
| --- | --- |
| **`ner`** | `CASE_NUMBER`, `COURT`, `DATE`, `GPE`, `JUDGE`, `LAWYER`, `ORG`, `OTHER_PERSON`, `PETITIONER`, `PRECEDENT`, `PROVISION`, `RESPONDENT`, `STATUTE`, `WITNESS` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `Precision` | 91.474 |
| `Recall` | 89.956 |
| **`F1-Score`** | **90.709** |