What is the best way for the inference process in LORA in PEFT approach
#43
by
Pradeep1995
- opened
Here is the SFTtrainer method i used for finetuning mistral
trainer = SFTTrainer(
model=peft_model,
train_dataset=data,
peft_config=peft_config,
dataset_text_field=" column name",
max_seq_length=3000,
tokenizer=tokenizer,
args=training_arguments,
packing=packing,
)
trainer.train()
I found different mechanisms for the finetuned model inference after PEFT based LORA finetuning
Method - 1
save adapter after completing training and then merge with base model then use for inference
trainer.model.save_pretrained("new_adapter_path")
from peft import PeftModel
finetuned_model = PeftModel.from_pretrained(base_model,
new_adapter_path,
torch_dtype=torch.float16,
is_trainable=False,
device_map="auto"
)
finetuned_model = finetuned_model.merge_and_unload()
Method - 2
save checkpoints during training and then use the checkpoint with the least loss
from peft import PeftModel
finetuned_model = PeftModel.from_pretrained(base_model,
"least loss checkpoint path",
torch_dtype=torch.float16,
is_trainable=False,
device_map="auto"
)
finetuned_model = finetuned_model.merge_and_unload()
Method - 3
same method with AutoPeftModelForCausalLM class
model = AutoPeftModelForCausalLM.from_pretrained(
"output directory checkpoint path",
low_cpu_mem_usage=True,
return_dict=True,
torch_dtype=torch.float16,
device_map="cuda")
finetuned_model = finetuned_model.merge_and_unload()
Method-4
AutoPeftModelForCausalLM class specifies the output folder without specifying a specific checkpoint
instruction_tuned_model = AutoPeftModelForCausalLM.from_pretrained(
training_args.output_dir,
torch_dtype=torch.bfloat16,
device_map = 'auto',
trust_remote_code=True,
)
finetuned_model = finetuned_model.merge_and_unload()
Method-5
All the above methods without merging
#finetuned_model = finetuned_model.merge_and_unload()
Which is the actual method I should follow for inference?
and when to use which method over another?