metadata
language:
- de
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_13_0
- generated_from_trainer
datasets:
- common_voice_13_0
metrics:
- wer
model-index:
- name: wav2vec2-large-xlsr-53-german-cv13-restart
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: MOZILLA-FOUNDATION/COMMON_VOICE_13_0 - DE
type: common_voice_13_0
config: de
split: test
args: 'Config: de, Training split: train+validation, Eval split: test'
metrics:
- name: Wer
type: wer
value: 0.10748248671697858
wav2vec2-large-xlsr-53-german-cv13-restart
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the MOZILLA-FOUNDATION/COMMON_VOICE_13_0 - DE dataset. It achieves the following results on the evaluation set:
- Loss: 0.1121
- Wer: 0.1075
- Cer: 0.0286
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 15.0
Training results
Training Loss | Epoch | Step | Cer | Validation Loss | Wer |
---|---|---|---|---|---|
0.1679 | 1.0 | 4348 | 0.0459 | 0.1617 | 0.1707 |
0.1597 | 2.0 | 8697 | 0.0479 | 0.1592 | 0.1717 |
0.1364 | 3.0 | 13045 | 0.0425 | 0.1524 | 0.1563 |
0.1311 | 4.0 | 17394 | 0.0406 | 0.1446 | 0.1515 |
0.1152 | 5.0 | 21742 | 0.0397 | 0.1431 | 0.1470 |
0.107 | 6.0 | 26091 | 0.0369 | 0.1382 | 0.1377 |
0.0957 | 7.0 | 30439 | 0.0373 | 0.1343 | 0.1372 |
0.0924 | 8.0 | 34788 | 0.0355 | 0.1335 | 0.1315 |
0.0835 | 9.0 | 39136 | 0.0384 | 0.1328 | 0.1380 |
0.0775 | 10.0 | 43485 | 0.0328 | 0.1232 | 0.1229 |
0.0752 | 11.0 | 47833 | 0.0309 | 0.1220 | 0.1174 |
0.0691 | 12.0 | 52182 | 0.0327 | 0.1182 | 0.1197 |
0.0689 | 13.0 | 56530 | 0.0307 | 0.1163 | 0.1150 |
0.0653 | 14.0 | 60879 | 0.0304 | 0.1141 | 0.1126 |
0.0717 | 15.0 | 65220 | 0.1121 | 0.1075 | 0.0286 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.14.0