oliverguhr's picture
Upload folder using huggingface_hub
ba365da
metadata
language:
  - de
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_13_0
  - generated_from_trainer
datasets:
  - common_voice_13_0
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xlsr-53-german-cv13-restart
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: MOZILLA-FOUNDATION/COMMON_VOICE_13_0 - DE
          type: common_voice_13_0
          config: de
          split: test
          args: 'Config: de, Training split: train+validation, Eval split: test'
        metrics:
          - name: Wer
            type: wer
            value: 0.10748248671697858

wav2vec2-large-xlsr-53-german-cv13-restart

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the MOZILLA-FOUNDATION/COMMON_VOICE_13_0 - DE dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1121
  • Wer: 0.1075
  • Cer: 0.0286

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 15.0

Training results

Training Loss Epoch Step Cer Validation Loss Wer
0.1679 1.0 4348 0.0459 0.1617 0.1707
0.1597 2.0 8697 0.0479 0.1592 0.1717
0.1364 3.0 13045 0.0425 0.1524 0.1563
0.1311 4.0 17394 0.0406 0.1446 0.1515
0.1152 5.0 21742 0.0397 0.1431 0.1470
0.107 6.0 26091 0.0369 0.1382 0.1377
0.0957 7.0 30439 0.0373 0.1343 0.1372
0.0924 8.0 34788 0.0355 0.1335 0.1315
0.0835 9.0 39136 0.0384 0.1328 0.1380
0.0775 10.0 43485 0.0328 0.1232 0.1229
0.0752 11.0 47833 0.0309 0.1220 0.1174
0.0691 12.0 52182 0.0327 0.1182 0.1197
0.0689 13.0 56530 0.0307 0.1163 0.1150
0.0653 14.0 60879 0.0304 0.1141 0.1126
0.0717 15.0 65220 0.1121 0.1075 0.0286

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.0