zeroshot's picture
Update README.md
d233e37
metadata
tags:
  - mteb
  - sparse
  - sparsity
  - quantized
  - onnx
  - embeddings
  - int8
  - deepsparse
model-index:
  - name: bge-small-en-v1.5-quant
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 74.19402985074626
          - type: ap
            value: 37.562368912364036
          - type: f1
            value: 68.47046663470138
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 91.89432499999998
          - type: ap
            value: 88.64572979375352
          - type: f1
            value: 91.87171177424113
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 46.71799999999999
          - type: f1
            value: 46.25791412217894
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 34.424
          - type: map_at_10
            value: 49.63
          - type: map_at_100
            value: 50.477000000000004
          - type: map_at_1000
            value: 50.483
          - type: map_at_3
            value: 45.389
          - type: map_at_5
            value: 47.888999999999996
          - type: mrr_at_1
            value: 34.78
          - type: mrr_at_10
            value: 49.793
          - type: mrr_at_100
            value: 50.632999999999996
          - type: mrr_at_1000
            value: 50.638000000000005
          - type: mrr_at_3
            value: 45.531
          - type: mrr_at_5
            value: 48.010000000000005
          - type: ndcg_at_1
            value: 34.424
          - type: ndcg_at_10
            value: 57.774
          - type: ndcg_at_100
            value: 61.248000000000005
          - type: ndcg_at_1000
            value: 61.378
          - type: ndcg_at_3
            value: 49.067
          - type: ndcg_at_5
            value: 53.561
          - type: precision_at_1
            value: 34.424
          - type: precision_at_10
            value: 8.364
          - type: precision_at_100
            value: 0.985
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 19.915
          - type: precision_at_5
            value: 14.124999999999998
          - type: recall_at_1
            value: 34.424
          - type: recall_at_10
            value: 83.64200000000001
          - type: recall_at_100
            value: 98.506
          - type: recall_at_1000
            value: 99.502
          - type: recall_at_3
            value: 59.744
          - type: recall_at_5
            value: 70.626
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 46.91874634333147
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 39.1201020016146
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 62.40334669601722
          - type: mrr
            value: 75.33175042870333
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 88.00433892980047
          - type: cos_sim_spearman
            value: 86.65558896421105
          - type: euclidean_pearson
            value: 85.98927300398377
          - type: euclidean_spearman
            value: 86.0905158476729
          - type: manhattan_pearson
            value: 86.0272425017433
          - type: manhattan_spearman
            value: 85.8929209838941
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 85.1038961038961
          - type: f1
            value: 85.06851570045757
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 37.42637694389153
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 33.89440321125906
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 28.111000000000004
          - type: map_at_10
            value: 39.067
          - type: map_at_100
            value: 40.519
          - type: map_at_1000
            value: 40.652
          - type: map_at_3
            value: 35.571999999999996
          - type: map_at_5
            value: 37.708999999999996
          - type: mrr_at_1
            value: 34.335
          - type: mrr_at_10
            value: 44.868
          - type: mrr_at_100
            value: 45.607
          - type: mrr_at_1000
            value: 45.655
          - type: mrr_at_3
            value: 41.798
          - type: mrr_at_5
            value: 43.786
          - type: ndcg_at_1
            value: 34.335
          - type: ndcg_at_10
            value: 45.513
          - type: ndcg_at_100
            value: 51.037
          - type: ndcg_at_1000
            value: 53.171
          - type: ndcg_at_3
            value: 40.131
          - type: ndcg_at_5
            value: 43.027
          - type: precision_at_1
            value: 34.335
          - type: precision_at_10
            value: 8.784
          - type: precision_at_100
            value: 1.4460000000000002
          - type: precision_at_1000
            value: 0.193
          - type: precision_at_3
            value: 19.361
          - type: precision_at_5
            value: 14.249
          - type: recall_at_1
            value: 28.111000000000004
          - type: recall_at_10
            value: 58.372
          - type: recall_at_100
            value: 81.631
          - type: recall_at_1000
            value: 95.192
          - type: recall_at_3
            value: 42.863
          - type: recall_at_5
            value: 50.924
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 28.437
          - type: map_at_10
            value: 37.942
          - type: map_at_100
            value: 39.108
          - type: map_at_1000
            value: 39.242
          - type: map_at_3
            value: 35.419
          - type: map_at_5
            value: 36.825
          - type: mrr_at_1
            value: 35.35
          - type: mrr_at_10
            value: 43.855
          - type: mrr_at_100
            value: 44.543
          - type: mrr_at_1000
            value: 44.588
          - type: mrr_at_3
            value: 41.826
          - type: mrr_at_5
            value: 42.937
          - type: ndcg_at_1
            value: 35.35
          - type: ndcg_at_10
            value: 43.32
          - type: ndcg_at_100
            value: 47.769
          - type: ndcg_at_1000
            value: 49.979
          - type: ndcg_at_3
            value: 39.709
          - type: ndcg_at_5
            value: 41.316
          - type: precision_at_1
            value: 35.35
          - type: precision_at_10
            value: 7.994
          - type: precision_at_100
            value: 1.323
          - type: precision_at_1000
            value: 0.182
          - type: precision_at_3
            value: 18.96
          - type: precision_at_5
            value: 13.236
          - type: recall_at_1
            value: 28.437
          - type: recall_at_10
            value: 52.531000000000006
          - type: recall_at_100
            value: 71.79299999999999
          - type: recall_at_1000
            value: 85.675
          - type: recall_at_3
            value: 41.605
          - type: recall_at_5
            value: 46.32
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 37.364999999999995
          - type: map_at_10
            value: 49.324
          - type: map_at_100
            value: 50.458999999999996
          - type: map_at_1000
            value: 50.512
          - type: map_at_3
            value: 45.96
          - type: map_at_5
            value: 47.934
          - type: mrr_at_1
            value: 43.009
          - type: mrr_at_10
            value: 52.946000000000005
          - type: mrr_at_100
            value: 53.74100000000001
          - type: mrr_at_1000
            value: 53.76800000000001
          - type: mrr_at_3
            value: 50.554
          - type: mrr_at_5
            value: 51.964
          - type: ndcg_at_1
            value: 43.009
          - type: ndcg_at_10
            value: 55.143
          - type: ndcg_at_100
            value: 59.653999999999996
          - type: ndcg_at_1000
            value: 60.805
          - type: ndcg_at_3
            value: 49.605
          - type: ndcg_at_5
            value: 52.437
          - type: precision_at_1
            value: 43.009
          - type: precision_at_10
            value: 8.984
          - type: precision_at_100
            value: 1.209
          - type: precision_at_1000
            value: 0.135
          - type: precision_at_3
            value: 22.09
          - type: precision_at_5
            value: 15.423
          - type: recall_at_1
            value: 37.364999999999995
          - type: recall_at_10
            value: 68.657
          - type: recall_at_100
            value: 88.155
          - type: recall_at_1000
            value: 96.48400000000001
          - type: recall_at_3
            value: 54.186
          - type: recall_at_5
            value: 60.848
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 23.827
          - type: map_at_10
            value: 31.721
          - type: map_at_100
            value: 32.812999999999995
          - type: map_at_1000
            value: 32.89
          - type: map_at_3
            value: 29.238999999999997
          - type: map_at_5
            value: 30.584
          - type: mrr_at_1
            value: 25.650000000000002
          - type: mrr_at_10
            value: 33.642
          - type: mrr_at_100
            value: 34.595
          - type: mrr_at_1000
            value: 34.650999999999996
          - type: mrr_at_3
            value: 31.205
          - type: mrr_at_5
            value: 32.499
          - type: ndcg_at_1
            value: 25.650000000000002
          - type: ndcg_at_10
            value: 36.366
          - type: ndcg_at_100
            value: 41.766
          - type: ndcg_at_1000
            value: 43.735
          - type: ndcg_at_3
            value: 31.447000000000003
          - type: ndcg_at_5
            value: 33.701
          - type: precision_at_1
            value: 25.650000000000002
          - type: precision_at_10
            value: 5.582
          - type: precision_at_100
            value: 0.872
          - type: precision_at_1000
            value: 0.108
          - type: precision_at_3
            value: 13.107
          - type: precision_at_5
            value: 9.198
          - type: recall_at_1
            value: 23.827
          - type: recall_at_10
            value: 48.9
          - type: recall_at_100
            value: 73.917
          - type: recall_at_1000
            value: 88.787
          - type: recall_at_3
            value: 35.498000000000005
          - type: recall_at_5
            value: 40.929
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 15.47
          - type: map_at_10
            value: 22.679
          - type: map_at_100
            value: 23.823
          - type: map_at_1000
            value: 23.94
          - type: map_at_3
            value: 20.535999999999998
          - type: map_at_5
            value: 21.61
          - type: mrr_at_1
            value: 18.781
          - type: mrr_at_10
            value: 26.979
          - type: mrr_at_100
            value: 27.945999999999998
          - type: mrr_at_1000
            value: 28.016000000000002
          - type: mrr_at_3
            value: 24.648
          - type: mrr_at_5
            value: 25.947
          - type: ndcg_at_1
            value: 18.781
          - type: ndcg_at_10
            value: 27.55
          - type: ndcg_at_100
            value: 33.176
          - type: ndcg_at_1000
            value: 36.150999999999996
          - type: ndcg_at_3
            value: 23.456
          - type: ndcg_at_5
            value: 25.16
          - type: precision_at_1
            value: 18.781
          - type: precision_at_10
            value: 5.050000000000001
          - type: precision_at_100
            value: 0.9039999999999999
          - type: precision_at_1000
            value: 0.129
          - type: precision_at_3
            value: 11.235000000000001
          - type: precision_at_5
            value: 8.01
          - type: recall_at_1
            value: 15.47
          - type: recall_at_10
            value: 38.446000000000005
          - type: recall_at_100
            value: 63.199000000000005
          - type: recall_at_1000
            value: 84.719
          - type: recall_at_3
            value: 26.687
          - type: recall_at_5
            value: 31.196
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 26.285999999999998
          - type: map_at_10
            value: 35.701
          - type: map_at_100
            value: 37.062
          - type: map_at_1000
            value: 37.175999999999995
          - type: map_at_3
            value: 32.65
          - type: map_at_5
            value: 34.129
          - type: mrr_at_1
            value: 32.05
          - type: mrr_at_10
            value: 41.105000000000004
          - type: mrr_at_100
            value: 41.996
          - type: mrr_at_1000
            value: 42.047000000000004
          - type: mrr_at_3
            value: 38.466
          - type: mrr_at_5
            value: 39.766
          - type: ndcg_at_1
            value: 32.05
          - type: ndcg_at_10
            value: 41.516999999999996
          - type: ndcg_at_100
            value: 47.083999999999996
          - type: ndcg_at_1000
            value: 49.309
          - type: ndcg_at_3
            value: 36.254999999999995
          - type: ndcg_at_5
            value: 38.346999999999994
          - type: precision_at_1
            value: 32.05
          - type: precision_at_10
            value: 7.536
          - type: precision_at_100
            value: 1.202
          - type: precision_at_1000
            value: 0.158
          - type: precision_at_3
            value: 17.004
          - type: precision_at_5
            value: 11.973
          - type: recall_at_1
            value: 26.285999999999998
          - type: recall_at_10
            value: 53.667
          - type: recall_at_100
            value: 76.97
          - type: recall_at_1000
            value: 91.691
          - type: recall_at_3
            value: 38.571
          - type: recall_at_5
            value: 44.131
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.595000000000002
          - type: map_at_10
            value: 31.352000000000004
          - type: map_at_100
            value: 32.652
          - type: map_at_1000
            value: 32.774
          - type: map_at_3
            value: 28.238000000000003
          - type: map_at_5
            value: 30.178
          - type: mrr_at_1
            value: 27.626
          - type: mrr_at_10
            value: 36.351
          - type: mrr_at_100
            value: 37.297000000000004
          - type: mrr_at_1000
            value: 37.362
          - type: mrr_at_3
            value: 33.885
          - type: mrr_at_5
            value: 35.358000000000004
          - type: ndcg_at_1
            value: 27.626
          - type: ndcg_at_10
            value: 36.795
          - type: ndcg_at_100
            value: 42.808
          - type: ndcg_at_1000
            value: 45.417
          - type: ndcg_at_3
            value: 31.744
          - type: ndcg_at_5
            value: 34.407
          - type: precision_at_1
            value: 27.626
          - type: precision_at_10
            value: 6.781
          - type: precision_at_100
            value: 1.159
          - type: precision_at_1000
            value: 0.155
          - type: precision_at_3
            value: 15.221000000000002
          - type: precision_at_5
            value: 11.279
          - type: recall_at_1
            value: 22.595000000000002
          - type: recall_at_10
            value: 48.126000000000005
          - type: recall_at_100
            value: 74.24300000000001
          - type: recall_at_1000
            value: 92.276
          - type: recall_at_3
            value: 34.346
          - type: recall_at_5
            value: 41.065000000000005
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.237000000000002
          - type: map_at_10
            value: 28.626
          - type: map_at_100
            value: 29.494999999999997
          - type: map_at_1000
            value: 29.587999999999997
          - type: map_at_3
            value: 26.747
          - type: map_at_5
            value: 27.903
          - type: mrr_at_1
            value: 24.847
          - type: mrr_at_10
            value: 31.091
          - type: mrr_at_100
            value: 31.91
          - type: mrr_at_1000
            value: 31.977
          - type: mrr_at_3
            value: 29.218
          - type: mrr_at_5
            value: 30.391000000000002
          - type: ndcg_at_1
            value: 24.847
          - type: ndcg_at_10
            value: 32.452999999999996
          - type: ndcg_at_100
            value: 37.009
          - type: ndcg_at_1000
            value: 39.425
          - type: ndcg_at_3
            value: 28.848000000000003
          - type: ndcg_at_5
            value: 30.752000000000002
          - type: precision_at_1
            value: 24.847
          - type: precision_at_10
            value: 4.968999999999999
          - type: precision_at_100
            value: 0.8009999999999999
          - type: precision_at_1000
            value: 0.107
          - type: precision_at_3
            value: 12.321
          - type: precision_at_5
            value: 8.62
          - type: recall_at_1
            value: 22.237000000000002
          - type: recall_at_10
            value: 41.942
          - type: recall_at_100
            value: 62.907000000000004
          - type: recall_at_1000
            value: 81.035
          - type: recall_at_3
            value: 32.05
          - type: recall_at_5
            value: 36.695
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 14.835
          - type: map_at_10
            value: 21.124000000000002
          - type: map_at_100
            value: 22.133
          - type: map_at_1000
            value: 22.258
          - type: map_at_3
            value: 19.076999999999998
          - type: map_at_5
            value: 20.18
          - type: mrr_at_1
            value: 17.791
          - type: mrr_at_10
            value: 24.438
          - type: mrr_at_100
            value: 25.332
          - type: mrr_at_1000
            value: 25.417
          - type: mrr_at_3
            value: 22.425
          - type: mrr_at_5
            value: 23.524
          - type: ndcg_at_1
            value: 17.791
          - type: ndcg_at_10
            value: 25.27
          - type: ndcg_at_100
            value: 30.362000000000002
          - type: ndcg_at_1000
            value: 33.494
          - type: ndcg_at_3
            value: 21.474
          - type: ndcg_at_5
            value: 23.189999999999998
          - type: precision_at_1
            value: 17.791
          - type: precision_at_10
            value: 4.58
          - type: precision_at_100
            value: 0.839
          - type: precision_at_1000
            value: 0.128
          - type: precision_at_3
            value: 10.071
          - type: precision_at_5
            value: 7.337000000000001
          - type: recall_at_1
            value: 14.835
          - type: recall_at_10
            value: 34.534
          - type: recall_at_100
            value: 57.812
          - type: recall_at_1000
            value: 80.467
          - type: recall_at_3
            value: 23.938000000000002
          - type: recall_at_5
            value: 28.269
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 23.400000000000002
          - type: map_at_10
            value: 31.55
          - type: map_at_100
            value: 32.72
          - type: map_at_1000
            value: 32.830999999999996
          - type: map_at_3
            value: 28.942
          - type: map_at_5
            value: 30.403000000000002
          - type: mrr_at_1
            value: 27.705000000000002
          - type: mrr_at_10
            value: 35.778
          - type: mrr_at_100
            value: 36.705
          - type: mrr_at_1000
            value: 36.773
          - type: mrr_at_3
            value: 33.458
          - type: mrr_at_5
            value: 34.778
          - type: ndcg_at_1
            value: 27.705000000000002
          - type: ndcg_at_10
            value: 36.541000000000004
          - type: ndcg_at_100
            value: 42.016999999999996
          - type: ndcg_at_1000
            value: 44.571
          - type: ndcg_at_3
            value: 31.845000000000002
          - type: ndcg_at_5
            value: 34.056
          - type: precision_at_1
            value: 27.705000000000002
          - type: precision_at_10
            value: 6.166
          - type: precision_at_100
            value: 0.993
          - type: precision_at_1000
            value: 0.132
          - type: precision_at_3
            value: 14.302999999999999
          - type: precision_at_5
            value: 10.187
          - type: recall_at_1
            value: 23.400000000000002
          - type: recall_at_10
            value: 47.61
          - type: recall_at_100
            value: 71.69200000000001
          - type: recall_at_1000
            value: 89.652
          - type: recall_at_3
            value: 35.026
          - type: recall_at_5
            value: 40.48
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 21.409
          - type: map_at_10
            value: 29.642000000000003
          - type: map_at_100
            value: 31.213
          - type: map_at_1000
            value: 31.418000000000003
          - type: map_at_3
            value: 26.811
          - type: map_at_5
            value: 28.433999999999997
          - type: mrr_at_1
            value: 25.494
          - type: mrr_at_10
            value: 33.735
          - type: mrr_at_100
            value: 34.791
          - type: mrr_at_1000
            value: 34.848
          - type: mrr_at_3
            value: 31.225
          - type: mrr_at_5
            value: 32.688
          - type: ndcg_at_1
            value: 25.494
          - type: ndcg_at_10
            value: 35.038000000000004
          - type: ndcg_at_100
            value: 41.499
          - type: ndcg_at_1000
            value: 44.183
          - type: ndcg_at_3
            value: 30.305
          - type: ndcg_at_5
            value: 32.607
          - type: precision_at_1
            value: 25.494
          - type: precision_at_10
            value: 6.739000000000001
          - type: precision_at_100
            value: 1.439
          - type: precision_at_1000
            value: 0.233
          - type: precision_at_3
            value: 14.163
          - type: precision_at_5
            value: 10.474
          - type: recall_at_1
            value: 21.409
          - type: recall_at_10
            value: 46.033
          - type: recall_at_100
            value: 74.932
          - type: recall_at_1000
            value: 92.35600000000001
          - type: recall_at_3
            value: 32.858
          - type: recall_at_5
            value: 38.675
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 18.145
          - type: map_at_10
            value: 24.712
          - type: map_at_100
            value: 25.813000000000002
          - type: map_at_1000
            value: 25.935000000000002
          - type: map_at_3
            value: 22.33
          - type: map_at_5
            value: 23.524
          - type: mrr_at_1
            value: 19.224
          - type: mrr_at_10
            value: 26.194
          - type: mrr_at_100
            value: 27.208
          - type: mrr_at_1000
            value: 27.3
          - type: mrr_at_3
            value: 23.906
          - type: mrr_at_5
            value: 24.988
          - type: ndcg_at_1
            value: 19.224
          - type: ndcg_at_10
            value: 29.015
          - type: ndcg_at_100
            value: 34.224
          - type: ndcg_at_1000
            value: 37.235
          - type: ndcg_at_3
            value: 24.22
          - type: ndcg_at_5
            value: 26.176
          - type: precision_at_1
            value: 19.224
          - type: precision_at_10
            value: 4.713
          - type: precision_at_100
            value: 0.787
          - type: precision_at_1000
            value: 0.11499999999999999
          - type: precision_at_3
            value: 10.290000000000001
          - type: precision_at_5
            value: 7.32
          - type: recall_at_1
            value: 18.145
          - type: recall_at_10
            value: 40.875
          - type: recall_at_100
            value: 64.371
          - type: recall_at_1000
            value: 86.67399999999999
          - type: recall_at_3
            value: 27.717000000000002
          - type: recall_at_5
            value: 32.381
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 46.845
          - type: f1
            value: 41.70045120106269
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 89.3476
          - type: ap
            value: 85.26891728027032
          - type: f1
            value: 89.33488973832894
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 92.67441860465115
          - type: f1
            value: 92.48821366022861
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 74.02872777017784
          - type: f1
            value: 57.28822860484337
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 74.01479488903833
          - type: f1
            value: 71.83716204573571
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 77.95897780766644
          - type: f1
            value: 77.80380046125542
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 31.897956840478948
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 30.71493744677591
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 31.279419910393734
          - type: mrr
            value: 32.41989483774563
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 50.49612915002382
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 60.29912718965653
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 83.86793477948164
          - type: cos_sim_spearman
            value: 79.43675709317894
          - type: euclidean_pearson
            value: 81.42564463337872
          - type: euclidean_spearman
            value: 79.39138648510273
          - type: manhattan_pearson
            value: 81.31167449689285
          - type: manhattan_spearman
            value: 79.28411420758785
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 84.43490408077298
          - type: cos_sim_spearman
            value: 76.16878340109265
          - type: euclidean_pearson
            value: 80.6016219080782
          - type: euclidean_spearman
            value: 75.67063072565917
          - type: manhattan_pearson
            value: 80.7238920179759
          - type: manhattan_spearman
            value: 75.85631683403953
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 83.03882477767792
          - type: cos_sim_spearman
            value: 84.15171505206217
          - type: euclidean_pearson
            value: 84.11692506470922
          - type: euclidean_spearman
            value: 84.78589046217311
          - type: manhattan_pearson
            value: 83.98651139454486
          - type: manhattan_spearman
            value: 84.64928563751276
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 83.11158600428418
          - type: cos_sim_spearman
            value: 81.48561519933875
          - type: euclidean_pearson
            value: 83.21025907155807
          - type: euclidean_spearman
            value: 81.68699235487654
          - type: manhattan_pearson
            value: 83.16704771658094
          - type: manhattan_spearman
            value: 81.7133110412898
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 87.1514510686502
          - type: cos_sim_spearman
            value: 88.11449450494452
          - type: euclidean_pearson
            value: 87.75854949349939
          - type: euclidean_spearman
            value: 88.4055148221637
          - type: manhattan_pearson
            value: 87.71487828059706
          - type: manhattan_spearman
            value: 88.35301381116254
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 83.36838640113687
          - type: cos_sim_spearman
            value: 84.98776974283366
          - type: euclidean_pearson
            value: 84.0617526427129
          - type: euclidean_spearman
            value: 85.04234805662242
          - type: manhattan_pearson
            value: 83.87433162971784
          - type: manhattan_spearman
            value: 84.87174280390242
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 87.72465270691285
          - type: cos_sim_spearman
            value: 87.97672332532184
          - type: euclidean_pearson
            value: 88.78764701492182
          - type: euclidean_spearman
            value: 88.3509718074474
          - type: manhattan_pearson
            value: 88.73024739256215
          - type: manhattan_spearman
            value: 88.24149566970154
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 64.65195562203238
          - type: cos_sim_spearman
            value: 65.0726777678982
          - type: euclidean_pearson
            value: 65.84698245675273
          - type: euclidean_spearman
            value: 65.13121502162804
          - type: manhattan_pearson
            value: 65.96149904857049
          - type: manhattan_spearman
            value: 65.39983948112955
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 85.2642818050049
          - type: cos_sim_spearman
            value: 86.30633382439257
          - type: euclidean_pearson
            value: 86.46510435905633
          - type: euclidean_spearman
            value: 86.62650496446
          - type: manhattan_pearson
            value: 86.2546330637872
          - type: manhattan_spearman
            value: 86.46309860938591
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 85.009977767778
          - type: mrr
            value: 95.59795143128476
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.84257425742574
          - type: cos_sim_ap
            value: 96.25445889914926
          - type: cos_sim_f1
            value: 92.03805708562844
          - type: cos_sim_precision
            value: 92.1765295887663
          - type: cos_sim_recall
            value: 91.9
          - type: dot_accuracy
            value: 99.83069306930693
          - type: dot_ap
            value: 96.00517778550396
          - type: dot_f1
            value: 91.27995920448751
          - type: dot_precision
            value: 93.1321540062435
          - type: dot_recall
            value: 89.5
          - type: euclidean_accuracy
            value: 99.84455445544555
          - type: euclidean_ap
            value: 96.14761524546034
          - type: euclidean_f1
            value: 91.97751660705163
          - type: euclidean_precision
            value: 94.04388714733543
          - type: euclidean_recall
            value: 90
          - type: manhattan_accuracy
            value: 99.84158415841584
          - type: manhattan_ap
            value: 96.17014673429341
          - type: manhattan_f1
            value: 91.93790686029043
          - type: manhattan_precision
            value: 92.07622868605817
          - type: manhattan_recall
            value: 91.8
          - type: max_accuracy
            value: 99.84455445544555
          - type: max_ap
            value: 96.25445889914926
          - type: max_f1
            value: 92.03805708562844
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 59.26454683321409
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 33.75520575713765
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 52.74607778008495
          - type: mrr
            value: 53.55101699770818
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 69.5008
          - type: ap
            value: 13.64158304183089
          - type: f1
            value: 53.50073331072236
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 60.01980758347483
          - type: f1
            value: 60.35679678249753
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 45.09419243325077
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 85.68874053764081
          - type: cos_sim_ap
            value: 73.26334732095694
          - type: cos_sim_f1
            value: 68.01558376272465
          - type: cos_sim_precision
            value: 64.93880489560834
          - type: cos_sim_recall
            value: 71.39841688654354
          - type: dot_accuracy
            value: 84.71121177802945
          - type: dot_ap
            value: 70.33606362522605
          - type: dot_f1
            value: 65.0887573964497
          - type: dot_precision
            value: 63.50401606425703
          - type: dot_recall
            value: 66.75461741424802
          - type: euclidean_accuracy
            value: 85.80795136198367
          - type: euclidean_ap
            value: 73.43201285001163
          - type: euclidean_f1
            value: 68.33166833166834
          - type: euclidean_precision
            value: 64.86486486486487
          - type: euclidean_recall
            value: 72.18997361477572
          - type: manhattan_accuracy
            value: 85.62317458425225
          - type: manhattan_ap
            value: 73.21212085536185
          - type: manhattan_f1
            value: 68.01681314482232
          - type: manhattan_precision
            value: 65.74735286875153
          - type: manhattan_recall
            value: 70.44854881266491
          - type: max_accuracy
            value: 85.80795136198367
          - type: max_ap
            value: 73.43201285001163
          - type: max_f1
            value: 68.33166833166834
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 88.81709162882757
          - type: cos_sim_ap
            value: 85.63540257309367
          - type: cos_sim_f1
            value: 77.9091382258904
          - type: cos_sim_precision
            value: 75.32710280373833
          - type: cos_sim_recall
            value: 80.67446874037573
          - type: dot_accuracy
            value: 88.04478596654636
          - type: dot_ap
            value: 84.16371725220706
          - type: dot_f1
            value: 76.45949643213666
          - type: dot_precision
            value: 73.54719396827655
          - type: dot_recall
            value: 79.61194949183862
          - type: euclidean_accuracy
            value: 88.9296386851399
          - type: euclidean_ap
            value: 85.71894615274715
          - type: euclidean_f1
            value: 78.12952767313823
          - type: euclidean_precision
            value: 73.7688098495212
          - type: euclidean_recall
            value: 83.03818909762857
          - type: manhattan_accuracy
            value: 88.89276982186519
          - type: manhattan_ap
            value: 85.6838514059479
          - type: manhattan_f1
            value: 78.06861875184856
          - type: manhattan_precision
            value: 75.09246088193457
          - type: manhattan_recall
            value: 81.29042192793348
          - type: max_accuracy
            value: 88.9296386851399
          - type: max_ap
            value: 85.71894615274715
          - type: max_f1
            value: 78.12952767313823
license: mit
language:
  - en

bge-small-en-v1.5-quant

latency

DeepSparse is able to improve latency performance on a 10 core laptop by 3X and up to 5X on a 16 core AWS instance.

Usage

This is the quantized (INT8) ONNX variant of the bge-small-en-v1.5 embeddings model accelerated with Sparsify for quantization and DeepSparseSentenceTransformers for inference.

pip install -U deepsparse-nightly[sentence_transformers]
from deepsparse.sentence_transformers import DeepSparseSentenceTransformer
model = DeepSparseSentenceTransformer('neuralmagic/bge-small-en-v1.5-quant', export=False)

# Our sentences we like to encode
sentences = ['This framework generates embeddings for each input sentence',
    'Sentences are passed as a list of string.',
    'The quick brown fox jumps over the lazy dog.']

# Sentences are encoded by calling model.encode()
embeddings = model.encode(sentences)

# Print the embeddings
for sentence, embedding in zip(sentences, embeddings):
    print("Sentence:", sentence)
    print("Embedding:", embedding.shape)
    print("")

For general questions on these models and sparsification methods, reach out to the engineering team on our community Slack.