metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- webdataset
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: frost-vision-v2-google_vit-base-patch16-224
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: webdataset
type: webdataset
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9359420289855073
- name: F1
type: f1
value: 0.8380952380952381
- name: Precision
type: precision
value: 0.8895800933125972
- name: Recall
type: recall
value: 0.7922437673130194
frost-vision-v2-google_vit-base-patch16-224
This model is a fine-tuned version of google/vit-base-patch16-224 on the webdataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.1562
- Accuracy: 0.9359
- F1: 0.8381
- Precision: 0.8896
- Recall: 0.7922
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.3416 | 1.1494 | 100 | 0.3273 | 0.8771 | 0.6124 | 0.9005 | 0.4640 |
0.2215 | 2.2989 | 200 | 0.2187 | 0.9183 | 0.7902 | 0.8537 | 0.7355 |
0.1753 | 3.4483 | 300 | 0.1899 | 0.9238 | 0.8098 | 0.8472 | 0.7756 |
0.1656 | 4.5977 | 400 | 0.1732 | 0.9272 | 0.8175 | 0.8606 | 0.7784 |
0.1288 | 5.7471 | 500 | 0.1562 | 0.9359 | 0.8381 | 0.8896 | 0.7922 |
0.1323 | 6.8966 | 600 | 0.1597 | 0.9322 | 0.8326 | 0.8609 | 0.8061 |
0.1004 | 8.0460 | 700 | 0.1613 | 0.9316 | 0.8324 | 0.8542 | 0.8116 |
0.0956 | 9.1954 | 800 | 0.1612 | 0.9336 | 0.8368 | 0.8620 | 0.8130 |
0.0841 | 10.3448 | 900 | 0.1621 | 0.9345 | 0.8383 | 0.8669 | 0.8116 |
0.0764 | 11.4943 | 1000 | 0.1586 | 0.9359 | 0.8438 | 0.8615 | 0.8269 |
0.0726 | 12.6437 | 1100 | 0.1546 | 0.9420 | 0.8594 | 0.8729 | 0.8463 |
0.0732 | 13.7931 | 1200 | 0.1529 | 0.9409 | 0.8565 | 0.87 | 0.8435 |
0.0626 | 14.9425 | 1300 | 0.1589 | 0.9377 | 0.8485 | 0.8637 | 0.8338 |
0.0481 | 16.0920 | 1400 | 0.1612 | 0.9394 | 0.8510 | 0.8767 | 0.8269 |
0.0507 | 17.2414 | 1500 | 0.1679 | 0.9339 | 0.8394 | 0.8539 | 0.8255 |
0.0446 | 18.3908 | 1600 | 0.1623 | 0.9417 | 0.8597 | 0.8664 | 0.8532 |
0.0498 | 19.5402 | 1700 | 0.1625 | 0.9417 | 0.8601 | 0.8643 | 0.8560 |
0.0458 | 20.6897 | 1800 | 0.1601 | 0.9397 | 0.8533 | 0.8693 | 0.8380 |
0.0307 | 21.8391 | 1900 | 0.1626 | 0.9432 | 0.8637 | 0.8673 | 0.8601 |
0.0334 | 22.9885 | 2000 | 0.1621 | 0.9443 | 0.8642 | 0.8829 | 0.8463 |
0.0339 | 24.1379 | 2100 | 0.1680 | 0.9435 | 0.8645 | 0.8675 | 0.8615 |
0.0222 | 25.2874 | 2200 | 0.1656 | 0.9394 | 0.8537 | 0.8628 | 0.8449 |
0.026 | 26.4368 | 2300 | 0.1687 | 0.9386 | 0.8515 | 0.8612 | 0.8421 |
0.0353 | 27.5862 | 2400 | 0.1666 | 0.9403 | 0.8555 | 0.8665 | 0.8449 |
0.0294 | 28.7356 | 2500 | 0.1660 | 0.9429 | 0.8614 | 0.8755 | 0.8476 |
0.0243 | 29.8851 | 2600 | 0.1664 | 0.9423 | 0.8590 | 0.8795 | 0.8393 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3