nemik's picture
frostsolutions/frost-vision-v2-google_vit-base-patch16-224
b76bfcc verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - webdataset
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: frost-vision-v2-google_vit-base-patch16-224
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: webdataset
          type: webdataset
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9359420289855073
          - name: F1
            type: f1
            value: 0.8380952380952381
          - name: Precision
            type: precision
            value: 0.8895800933125972
          - name: Recall
            type: recall
            value: 0.7922437673130194

frost-vision-v2-google_vit-base-patch16-224

This model is a fine-tuned version of google/vit-base-patch16-224 on the webdataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1562
  • Accuracy: 0.9359
  • F1: 0.8381
  • Precision: 0.8896
  • Recall: 0.7922

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.3416 1.1494 100 0.3273 0.8771 0.6124 0.9005 0.4640
0.2215 2.2989 200 0.2187 0.9183 0.7902 0.8537 0.7355
0.1753 3.4483 300 0.1899 0.9238 0.8098 0.8472 0.7756
0.1656 4.5977 400 0.1732 0.9272 0.8175 0.8606 0.7784
0.1288 5.7471 500 0.1562 0.9359 0.8381 0.8896 0.7922
0.1323 6.8966 600 0.1597 0.9322 0.8326 0.8609 0.8061
0.1004 8.0460 700 0.1613 0.9316 0.8324 0.8542 0.8116
0.0956 9.1954 800 0.1612 0.9336 0.8368 0.8620 0.8130
0.0841 10.3448 900 0.1621 0.9345 0.8383 0.8669 0.8116
0.0764 11.4943 1000 0.1586 0.9359 0.8438 0.8615 0.8269
0.0726 12.6437 1100 0.1546 0.9420 0.8594 0.8729 0.8463
0.0732 13.7931 1200 0.1529 0.9409 0.8565 0.87 0.8435
0.0626 14.9425 1300 0.1589 0.9377 0.8485 0.8637 0.8338
0.0481 16.0920 1400 0.1612 0.9394 0.8510 0.8767 0.8269
0.0507 17.2414 1500 0.1679 0.9339 0.8394 0.8539 0.8255
0.0446 18.3908 1600 0.1623 0.9417 0.8597 0.8664 0.8532
0.0498 19.5402 1700 0.1625 0.9417 0.8601 0.8643 0.8560
0.0458 20.6897 1800 0.1601 0.9397 0.8533 0.8693 0.8380
0.0307 21.8391 1900 0.1626 0.9432 0.8637 0.8673 0.8601
0.0334 22.9885 2000 0.1621 0.9443 0.8642 0.8829 0.8463
0.0339 24.1379 2100 0.1680 0.9435 0.8645 0.8675 0.8615
0.0222 25.2874 2200 0.1656 0.9394 0.8537 0.8628 0.8449
0.026 26.4368 2300 0.1687 0.9386 0.8515 0.8612 0.8421
0.0353 27.5862 2400 0.1666 0.9403 0.8555 0.8665 0.8449
0.0294 28.7356 2500 0.1660 0.9429 0.8614 0.8755 0.8476
0.0243 29.8851 2600 0.1664 0.9423 0.8590 0.8795 0.8393

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3